Випуски

 / 

2024

 / 

том 22 / 

випуск 4

 



Завантажити повну версію статті (в PDF форматі)

Majeed Ali HABEEB, Araa Hassan HADI, and Dhay Ali SABUR

Enhancement of Structural and Dielectric Properties of PVA–BaTiO3–CuO Nanostructures for Electronic and Electrical Applications
903–913 (2024)

PACS numbers: 72.80.Tm, 77.84.Lf, 78.20.Ci, 78.30.-j, 78.67.Sc, 81.07.Pr, 82.35.Np

У даній роботі досліджено вплив наночастинок (НЧ) оксиду титанату Барію та оксиду Купруму на полівініловий спирт (ПВС) із їхніми різними масовими частками (0, 2, 4, 6 мас.%). Для виготовлення зразків використовувалася техніка лиття з розчину. Зображення, одержані за допомогою оптичної мікроскопії, показують, що розподіл НЧ у суміші був однорідним, а НЧ BaTiO3–CuO у концентрації 6 мас.% розташовуються у неперервній сітці всередині полімеру. Спектри інфрачервоної спектроскопії на основі Фур'є-перетвору відображають зміну положення та інтенсивности зв'язків. Це свідчить про нехемічну взаємодію між полімером і НЧ BaTiO3–CuO. Експериментальні результати показують, що зі збільшенням концентрації НЧ BaTiO3–CuO у зразках збільшуються їхні діелектрична проникність і діелектричні втрати, та вони зменшуються зі збільшенням частоти. Електропровідність змінного струму зростає із збільшенням частоти та концентрації НЧ BaTiO3–CuO. Нарешті, результати показують, що наноструктури ПВС–BaTiO3–CuO можуть бути корисними в різних пристроях наноелектроніки

КЛЮЧОВІ СЛОВА: нанокомпозити, оксид титанату Барію, оксид Купруму, інфрачервона спектроскопія на основі Фур'є-перетвору, діелектричні властивості


REFERENCES
  1. C. C. Okpala, Int. J. Eng. Res. Dev., 8, No. 11: 17 (2013); http://www.ijerd.com/paper/vol8-issue11/C08111723.pdf
  2. S. M. Mahdi and M. A. Habeeb, Optical and Quantum Electronics, 54, Iss. 12: 854 (2022); https://doi.org/10.1007/s11082-022-04267-6
  3. V. M. Mohan, P. B. Bhargav, V. Raja, A. K. Sharma, and V. V. R. Narasimha Rao, Soft Mater., 5, No. 1: 33 (2007); https://doi.org/10.1080/15394450701405291
  4. M. A. Habeeb and Z. S. Jaber, East European Journal of Physics, 4: 176 (2022); doi:10.26565/2312-4334-2022-4-18
  5. M. A. Habeeb, European Journal of Scientific Research, 57, No. 3: 478 (2011).
  6. Q. M. Jebur, A. Hashim, and M. A. Habeeb, Egyptian Journal of Chemistry, 63: 719 (2020); https://dx.doi.org/10.21608/ejchem.2019.14847.1900
  7. R. Tintu, K. Saurav, K. Sulakshna, V. P. N. Nampoori, P. Radhakrishnan, and S. Thomas, J. Nan Oxide Glas., 2, No. 4: 167 (2010); https://www.chalcogen.ro/167_Tintu.pdf
  8. A. H. Hadi and M. A. Habeeb, Journal of Mechanical Engineering Research and Developments, 44, No. 3: 265 (2021); https://jmerd.net/03-2021-265-274
  9. N. Hayder, M. A. Habeeb, and A. Hashim, Egyptian Journal of Chemistry, 63: 577 (2020); doi:10.21608/ejchem.2019.14646.1887
  10. Shawna Nations, Monique Long, Mike Wages, Jonathan D. Maul, Christopher W. Theodorakis, and George P. Cobb, Chemosphere, 135: 166 (2015); https://doi.org/10.1016/j.chemosphere.2015.03.078
  11. M. A. Habeeb, A. Hashim, and N. Hayder, Egyptian Journal of Chemistry, 63: 709 (2020); https://dx.doi.org/10.21608/ejchem.2019.13333.1832
  12. A. Hashim, M. A. Habeeb, and Q. M. Jebur, Egyptian Journal of Chemistry, 63: 735 (2020); https://dx.doi.org/10.21608/ejchem.2019.14849.1901
  13. S. M. Mahdi and M. A. Habeeb, Physics and Chemistry of Solid State, 23, No. 4: 785 (2022); doi:10.15330/pcss.23.4.785-792
  14. Madalina Elena Grigore, Elena Ramona Biscu, Alina Maria Holban, Monica Cartelle Gestal, and Alexandru Mihai Grumezescu, Pharmaceuticals, 9, No. 4: 75 (2016); https://doi.org/10.3390/ph9040075
  15. M. A. Habeeb and W. S. Mahdi, International Journal of Emerging Trends in Engineering Research, 7, No. 9: 247 (2019); doi:10.30534/ijeter/2019/06792019
  16. M. A. Habeeb and R. S. Abdul Hamza, Journal of Bionanoscience, 12, No. 3: 328 (2018); https://doi.org/10.1166/jbns.2018.1535
  17. Shruti Nambiar and John T. W. Yeow, ACS Applied Materials & Interfaces, 4, No. 11: 5717 (2012); https://doi.org/10.1021/am300783d
  18. M. A. Habeeb, A. Hashim, and N. Hayder, Egyptian Journal of Chemistry, 63: 697 (2020); https://dx.doi.org/10.21608/ejchem.2019.12439.1774
  19. M. A. Habeeb and W. K. Kadhim, Journal of Engineering and Applied Sciences, 9, No. 4: 109 (2014); doi:10.36478/jeasci.2014.109.113
  20. M. Hdidar, S. Chouikhi, A. Fattoum, M. Arous, and A. Kallel, Journal of Alloys and Compounds, 750: 375 (2018); https://doi.org/10.1016/j.jallcom.2018.03.272
  21. M. A. Habeeb, Journal of Engineering and Applied Sciences, 9, No. 4: 102 (2014); doi:10.36478/jeasci.2014.102.108
  22. Hyeon Jeong Park, Arash Badakhsh, Ik Tae Im, Min-Soo Kim, and Chan Woo Park, Applied Thermal Engineering, 107: 907 (2016); https://doi.org/10.1016/j.applthermaleng.2016.07.053
  23. S. M. Mahdi and M. A. Habeeb, Digest Journal of Nanomaterials and Biostructures, 17, No. 3: 941 (2022); https://doi.org/10.15251/DJNB.2022.173.941
  24. G. A. Eid, A. Kany, M. El-Toony, I. Bashter, and F. Gaber, Arab. J. Nucl. Sci. Appl., 46, No. 2: 226 (2013).
  25. Araa Hassan Hadi and Majeed Ali Habeeb, Journal of Physics: Conference Series, 1973: 012063 (2021); doi:10.1088/1742-6596/1973/1/012063
  26. Q. M. Jebur, A. Hashim, and M. A. Habeeb, Egyptian Journal of Chemistry, 63, No. 2: 611 (2020); https://dx.doi.org/10.21608/ejchem.2019.10197.1669
  27. B. H. Rabee and I. Oreibi, Bulletin of Electrical Engineering and Informatics, 7, No. 4: 538 (2018); https://doi.org/10.11591/eei.v7i4.924
  28. M. A. Habeeb and A. H. Mohammed, Optical and Quantum Electronics, 55, Iss. 9: 791 (2023); https://doi.org/10.1007/s11082-023-05061-8
  29. M. H. Dwech, M. A. Habeeb, and A. H. Mohammed, Ukr. J. Phys., 67, No. 10: 757 (2022); https://doi.org/10.15407/ujpe67.10.757
  30. R. S. Abdul Hamza and M. A. Habeeb, Optical and Quantum Electronics, 55, Iss. 8: 705 (2023); https://doi.org/10.1007/s11082-023-04995-3
  31. Morget Martin, Neena Prasad, Muthu Mariappan Sivalingam, D. Sastikumar, and Balasubramanian Karthikeyan, Journal of Material Science: Material in Electronics, 29: 365 (2018); doi:10.1007/s10854-017-7925-z
  32. M. A. Habeeb and W. H. Rahdi, Optical and Quantum Electronics, 55, Iss. 4: 334 (2023); https://doi.org/10.1007/s11082-023-04639-6
  33. H. N. Chandrakala, B. Ramaraj, Shivakumaraiah, G. M. Madhu, and Siddaramaiah, Journal of Alloys and Compounds, 551: 531 (2013); https://doi.org/10.1016/j.jallcom.2012.10.188
  34. Anjana Goswami, A. K. Bajpai, Jaya Bajpai, and B. K. Sinha, Polym. Bull., 75: 781 (2018); https://doi.org/10.1007/s00289-017-2067-2
  35. S. M. Mahdi and M. A. Habeeb, AIMS Materials Science, 10, No. 2: 288 (2023); doi:10.3934/matersci.2023015
  36. O. E. Gouda, S. F. Mahmoud, A. A. El-Gendy, and A. S. Haiba, Indonesian Journal of Electrical Engineering, 12, No. 12: 7987 (2014); https://doi.org/10.11591/telkomnika.v12i12.6675
  37. A. A. Mohammed and M. A. Habeeb, East European Journal of Physics, 2: 157 (2023); doi:10.26565/2312-4334-2023-2-15
  38. N. K. Al-Sharifi and M. A. Habeeb, East European Journal of Physics, 2: 341 (2023); doi:10.26565/2312-4334-2023-2-40
  39. Nhiem Tran, Aparna Mir, Dhriti Mallik, Arvind Sinha, Suprabha Nayar, and Thomas J Webster, Int. J. Nanomedicine, 5: 277 (2010); https://doi.org/10.2147/IJN.S9220
  40. Z. S. Jaber, M. A. Habeeb, and W. H. Radi, East European Journal of Physics, 2: 228 (2023); doi:10.26565/2312-4334-2023-2-25
  41. M. A. Habeeb and R. S. A. Hamza, Indonesian Journal of Electrical Engineering and Informatics, 6, No. 4: 428 (2018); doi:10.11591/ijeei.v6i1.511


Creative Commons License
Усі статті ліцензовано на умовах Ліцензії Creative Commons із зазначенням авторства — без похідних 4.0 Міжнародна
©2003—2024 НАНОСИСТЕМИ, НАНОМАТЕРІАЛИ, НАНОТЕХНОЛОГІЇ Інститут металофізики ім. Г.В. Курдюмова Національної Академії наук України.

Електрона пошта: tatar@imp.kiev.ua Телефони та адреса редакції Про збірник Угода користувача