Випуски

 / 

2024

 / 

том 22 / 

випуск 2

 



Завантажити повну версію статті (в PDF форматі)

REHAB SHATHER ABDUL HAMZA, IDREES OREIBI, and MAJEED ALI HABEEB

Enhancement Structural Properties and Optical Energy Gap of PVA–ZrO2–CuO Nanostructures for Optical Nanodevices
379–390 (2024)

PACS numbers: 42.79.-e, 78.20.Ci, 78.30.-j, 78.67.Sc, 81.07.Pr, 82.35.Np, 83.85.Ei

Як перспективну наноструктуру для використання в різних оптоелектронних нанопристроях, у цьому дослідженні створено нанокомпозити ПВС–ZrO2–CuO з використанням методу лиття з різними співвідношеннями ZrO2/CuO. У порівнянні з іншими наносистемами, наноструктури ПВС–ZrO2–CuO вирізняються низькою вартістю, високою корозійною стійкістю, хорошими оптичними властивостями та легкістю. Дослідження зосереджено на вивченні структурно-оптичних характеристик нанокомпозитів у складі ПВС–ZrO2–CuO. Спектри інфрачервоної спектроскопії на основі перетворення Фур'є вказують на фізичну інтерференцію між чистим полімером і наночастинками. Оптичний мікроскоп використовується для опису структурних властивостей і змін морфології поверхні нанокомпозиту. Висновки про оптичні характеристики свідчать про збільшення поглинання приблизно на 283%. Крім того, енергетична щілина зменшується приблизно на 107% для дозволених непрямих переходів і на 408% для заборонених непрямих переходів. Ці зміни спостерігаються, коли вміст ПВС–ZrO2–CuO сягає вагового відсотка у 6%. Отже, ці результати свідчать про те, що матеріял може мати придатність для цілого ряду оптико-електронних пристроїв

КЛЮЧОВІ СЛОВА: полівініловий спирт, наночастинки ZrO2–CuO, оптичні властивості


REFERENCES
  1. E. Sharifzadeh, I. Ghasemi, M. Karrabi, and H. Azizi, Iranian Polymer Journal, 23: 835 (2014).
  2. A. H. Hadi and M. A. Habeeb, Journal of Mechanical Engineering Research and Developments, 44, No. 3: 265 (2021); https://jmerd.net/03-2021-265-274
  3. C. Srikanth, B. C. Sridhar, M. Prasad, and R. Mathad, Journal of Advanced Physics, 5, No. 2: 105 (2016).
  4. M. A. Habeeb and Z. S. Jaber, East European Journal of Physics, 4: 176 (2022); doi:10.26565/2312-4334-2022-4-18
  5. M. A. Habeeb, European Journal of Scientific Research, 57, No. 3: 478 (2011).
  6. Q. M. Jebur, A. Hashim, and M. A. Habeeb, Egyptian Journal of Chemistry, 63: 719 (2020); https://dx.doi.org/10.21608/ejchem.2019.14847.1900
  7. N. Tran, A. Mir, D. Mallik, A. Sinha, S. Nayar, and T. J. Webster, Int. J. Nanomedicine, 5: 277 (2010).
  8. S. M. Mahdi, M. A. Habeeb, Optical and Quantum Electronics, 54, Iss. 12: 854 (2022); https://doi.org/10.1007/s11082-022-04267-6
  9. N. Hayder, M.A. Habeeb, and A. Hashim, Egyptian Journal of Chemistry, 63: 577 (2020); doi:10.21608/ejchem.2019.14646.1887
  10. A. B. Devi, D. S. Moirangthem, N. C. Talukdar, M. D. Devi, N. R. Singh, and M. N. Luwang, Chinese Chemical Letters, 25, No. 12: 1615 (2014).
  11. M. A. Habeeb, A. Hashim, and N. Hayder, Egyptian Journal of Chemistry, 63: 709 (2020); https://dx.doi.org/10.21608/ejchem.2019.13333.1832
  12. A. Hashim, M. A. Habeeb, and Q. M. Jebur, Egyptian Journal of Chemistry, 63: 735 (2020); https://dx.doi.org/10.21608/ejchem.2019.14849.1901
  13. S. M. Mahdi and M. A. Habeeb, Physics and Chemistry of Solid State, 23, No. 4: 785 (2022); doi:10.15330/pcss.23.4.785-792
  14. N. H. El Fewaty, A. El Sayed, and R. Hafez, Polymer Science Series A, 58: 1004 (2016).
  15. M. A. Habeeb and W. S. Mahdi, International Journal of Emerging Trends in Engineering Research, 7, No. 9 : 247 (2019); doi:10.30534/ijeter/2019/06792019
  16. M. A. Habeeb and R. S. Abdul Hamza, Journal of Bionanoscience, 12, No.3: 328 (2018); https://doi.org/10.1166/jbns.2018.1535
  17. S. Nambiar and J. T. Yeow, ACS Applied Materials & Interfaces, 4, No. 11: 5717 (2012).
  18. M. A. Habeeb, A. Hashim, and N. Hayder, Egyptian Journal of Chemistry, 63: 697 (2020); https://dx.doi.org/10.21608/ejchem.2019.12439.1774
  19. M. A. Habeeb and W. K. Kadhim, Journal of Engineering and Applied Sciences, 9, No. 4: 109 (2014); doi:10.36478/jeasci.2014.109.113
  20. M. Hdidar, S. Chouikhi, A. Fattoum, M. Arous, and A. Kallel, Journal of Alloys and Compounds, 750: 375 (2018).
  21. M. A. Habeeb, Journal of Engineering and Applied Sciences, 9, No. 4: 102 (2014); doi:10.36478/jeasci.2014.102.108
  22. H. J. Park, A. Badakhsh, I. T. Im, M.-S. Kim, and C. W. Park, Applied Thermal Engineering, 107: 907 (2016).
  23. S. M. Mahdi and M. A. Habeeb, Digest Journal of Nanomaterials and Biostructures, 17, No. 3: 941 (2022); https://doi.org/10.15251/DJNB.2022.173.941
  24. G. A. Eid, A. Kany, M. El-Toony, I. Bashter, and F. Gaber, Arab. J. Nucl. Sci. Appl., 46, No. 2: 226 (2013).
  25. A. H. Hadi and M. A. Habeeb, Journal of Physics: Conference Series, 1973, No. 1: 012063 (2021); doi:10.1088/1742-6596/1973/1/012063
  26. Q. M. Jebur, A. Hashim, and M. A. Habeeb, Egyptian Journal of Chemistry, 63, No. 2: 611 (2020); https://dx.doi.org/10.21608/ejchem.2019.10197.1669
  27. G. Aras, E. L. Orhan, I. F. Sel?uk, S. B. Ocak and M. Ertu?rul, Procedia–Social and Behavioral Sciences, 95: 1740 (2015).
  28. M. A. Habeeb and A. H. Mohammed, Optical and Quantum Electronics, 55, Iss. 9: 791 (2023); https://doi.org/10.1007/s11082-023-05061-8
  29. M. H. Dwech, M. A. Habeeb, and A. H. Mohammed, Ukr. J. Phys., 67, No. 10: 757 (2022); https://doi.org/10.15407/ujpe67.10.757
  30. S. M. Mahdi and M. A. Habeeb, Polymer Bulletin, 80, No. 12: 1 (2023); doi:10.1007/s00289-023-04676-x
  31. M. Martin, N. Prasad, M. M. Sivalingam, D. Sastikumar, and B. Karthikeyan, Journal of Material Science: Material in Electronics, 29: 365 (2018).
  32. M. A. Habeeb and W. H. Rahdi, Optical and Quantum Electronics, 55, Iss. 4: 334 (2023); https://doi.org/10.1007/s11082-023-04639-6
  33. A. A. Mohammed and M. A. Habeeb, Silicon, 15: 5163 (2023); https://doi.org/10.1007/s12633-023-02426-2
  34. R. Dalven and R. Gill, J. Appl. Phys., 38, No. 2: 753 (1967); doi:10.1063/1.1709406
  35. N. K. Al-Sharifi and M. A. Habeeb, Silicon, 15: 4979 (2023); https://doi.org/10.1007/s12633-023-02418-2
  36. R. N. Bhagat and V. S. Sangawar, Int. J. Sci. Res. (IJSR), 6: 361 (2017).
  37. R. S. Abdul Hamza and M. A. Habeeb, Optical and Quantum Electronics, 55, Iss. 8: 705 (2023); https://doi.org/10.1007/s11082-023-04995-3
  38. A. Goswami, A. K. Bajpai, and B. K. Sinha, Polym. Bull., 75, No. 2: 781 (2018).
  39. S. M. Mahdi and M. A. Habeeb, AIMS Materials Science, 10, No. 2: 288 (2023); doi:10.3934/matersci.2023015
  40. O. E. Gouda, S. F. Mahmoud, A. A. El-Gendy, and A. S. Haiba, Indonesian Journal of Electrical Engineering, 12, No. 12: 7987 (2014).
  41. M. A. Habeeb and R. S. A. Hamza, Indonesian Journal of Electrical Engineering and Informatics, 6, No. 4: 428 (2018); doi:10.11591/ijeei.v6i1.511
  42. N. K. Al-Sharifi and M. A. Habeeb, East European Journal of Physics, 2: 341 (2023), doi:10.26565/2312-4334-2023-2-40
  43. C. V. Reddy, B. Babu, I. N. Reddy, and J. Shim, Ceramics International, 44, No. 6: 6940 (2018).
  44. A. A. Mohammed and M. A. Habeeb, East European Journal of Physics, 2: 157 (2023); doi:10.26565/2312-4334-2023-2-15
  45. Z. S. Jaber, M. A. Habeeb, and W. H. Radi, East European Journal of Physics, 2: 228 (2023); doi:10.26565/2312-4334-2023-2-25


Creative Commons License
Усі статті ліцензовано на умовах Ліцензії Creative Commons із зазначенням авторства — без похідних 4.0 Міжнародна
©2003—2024 НАНОСИСТЕМИ, НАНОМАТЕРІАЛИ, НАНОТЕХНОЛОГІЇ Інститут металофізики ім. Г.В. Курдюмова Національної Академії наук України.

Електрона пошта: tatar@imp.kiev.ua Телефони та адреса редакції Про збірник Угода користувача