Issues

 / 

2019

 / 

vol. 17 / 

Issue 4

 



Download the full version of the article (in PDF format)

Î. L. Ìaslyanchuk, T. ². Mykytyuk, ². Ì. Fodchuk
«Electrical and Photoelectrical Properties of the CdS/CdMgTe Heterostructure for Tandem Solar Cells»
737–746 (2019)

PACS numbers: 73.40.Lq, 73.50.Pz, 73.61.Le, 81.40.Rs, 84.60.Jt, 88.40.Hj, 88.40.jp

Thin-film CdS/\(Cd_{0.92}Mg{0.08}Te\) heterostructures for applications in tandem solar cells are investigated. As shown, the measured I–V characteristics of the solar cells are described in terms of the Sah–Noyce–Shockley theory of generation–recombination in the spatial-charge region of the heterostructure. The quantum efficiency spectrum describes well the observed spectra taking into account the drift and diffusion components, recombination on the front and rear surfaces of the CdS/\(Cd_{0.92}Mg{0.08}Te\) absorber layer. Comparison of the calculation results with the experimental data allows determining the main parameters of the CdS/\(Cd_{0.92}Mg{0.08}Te\) layer and diode structure.

Keywords: CdMgTe solar cells, charge-transport mechanisms, tandem solar cells, photoelectrical characteristics of solar cells

https://doi.org/10.15407/nnn.17.04.737

References
1. https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20190103.pdf.
2. https://www.nrel.gov/pv/assets/pdfs/research-module-efficiencychart.20190128.pdf.
3. E. Garnett and P. Yang, Nano Lett., 10: 1082 (2010).
4. H. Dang and V. P. Singh, Sci. Rep., 5: 14859 (2015).
5. O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Go?mez Rivas, and A. Lagendijk, Nano Lett., 9: 930 (2009).
6. Z. Wu, J. B. Neaton, and J. C. Grossman, Phys. Rev. Lett., 100: 246804 (2008).
7. P. Madras, E. Dailey, and J. Drucker, Nano Lett., 9: 3826 (2009).
8. O. S. Martinez, D. Reyes-Coronado, and X. Mathew, Proc. SPIE 7409. Thin Film Solar Technology (August 20, 2009), 74090V.
9. L. À. Kosyachenko, X. Mathew, Î. L. Ìaslyanchuk, T. ². Mykytyuk, ². Ì. Fodchuk, and V. V. Kulchynsky, Solar Energy, 116: 399 (2015).
10. R. Dhere, K. Ramanathan, J. Scharf, H. Moutinho, B. To, A. Duda, and R. Noufi, Conference Record of the 2006 IEEE 4th World Conference (7–12, May 2006), vol. 1, p. 546.
11. C. Sah, R. Noyce, and W. Shockley, Proceedings of the IRE, 46: 1228 (1957).
12. L. A. Kosyachenko, O. L. Maslyanchuk, V. V. Motushchuk, and V. M. Sklyarchuk, Solar Energy Materials & Solar Cells., 82: 65 (2004).
13. M. Gloeckler, A. L. Fahrenbruch, and J. R. Sites, Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (18 May, 2003, Osaka, Japan), vol. 1, p. 491.
14. T. A. Gessert, W. K. Metzger, P. Dippo, S. E. Asher, R. G. Dhere, and M. R. Young, Thin Solid Films, 517: 2370 (2009).
15. L. A. Kosyachenko, O. L. Maslyanchuk, V. V. Motushchuk, and V. M. Sklyarchuk, Solar Energy Materials & Solar Cells, 82: 65 (2004).
16. L. A. Kosyachenko, A. I. Savchuk, and E. V. Grushko, Thin Solid Films, 517: 2386 (2009).
17. S. M. Sze and K. Ng. Kwok, Physics of Semiconductor Devices (New Jersey: Wiley–Interscience: 2006).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
© NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 2019

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement