Issues

 / 

2022

 / 

vol. 20 / 

Issue 1

 



Download the full version of the article (in PDF format)

Yu. I. Andrusyshyn
Theoretical Method of Determining the Physical Parameters of Graphene
0001–0013 (2022)

PACS numbers: 71.15.-m, 71.30.+h, 72.10.Bg, 72.80.Vp, 73.22.Pr, 73.63.-b, 81.05.ue

By means of the detailed analysis of method for calculating the graphene parameters, the relationship between the current-carriers’ concentration and the gate voltage is established. Different mechanisms of carriers’ scattering in graphene and the mobility they cause are considered. The practical side of the obtained results shows how to control the possible electrical conductivity of graphene by means of changing the chemical-potential value.

Key words: mobility, electrical conductivity, Mott mechanism, thermoelectric power, thermoelectric evaluation

https://doi.org/10.15407/nnn.20.01.001

References
1. Scientific Background on the Nobel Prize in Physics 2010: Gra-phene (Stockholm: The Royal Swedish Academy of Sciences: 2010).
2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, No. 5696: 666 (2004); https://doi.org/10.1126/science.1102896
3. G. W. Hanson, J. of Appl. Phys., 113: 029902 (2013); https://doi.org/10.1063/1.2891452
4. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Communications, 146: 351 (2008); https://doi.org/10.1016/j.ssc.2008.02.024
5. V. Ryzhii, J. Appl. Phys., 101: 024509 (2007); https://doi.org/10.1063/1.2426904
6. Yu. A. Kruglyak and M. V. Strikha, Sensor Electronics and Mi-crosystem Technologies, 13, No. 3: 5 (2016) (in Ukrainian); http://liber.onu.edu.ua/pdf/SENS_ELECT.pdf
7. O. A. Golovanov, G. S. Makeeva, and V. V. Varenitsa, Reliabil-ity and Quality of Complex Systems, 4: 36 (2014) (in Russian); https://nikas.pnzgu.ru/files/nikas.pnzgu.ru/26.pdf
8. L. A. Falkovsky, Phys. Rev. B, 75: 033409 (2007); https://doi.org/10.1103/PhysRevB.75.033409
9. V. F. Gantmakher, Electrons in Disordered Media (Moscow: Fiz-matlit: 2013) (in Russian).
10. B. I. Shklovsky and A. L. Efros, Electronic Properties of Doped Semiconductors (Moscow: Nauka: 1979) (in Russian).
11. O. V. Gerashchenko, Fazovyye Perekhody, Mezhfaznyye Granitsy i Nanomaterialy, 4: 116 (2017) (in Russian); http://pti-nt.ru/ru/issue/publication/424-pryjkovaya-provodimost-s-zakonom-12-v-mnogosloiynyh-nanokompozitah-co40fe40b2034sio266c47-vblizi-perehoda-metall-dielektrik
12. O. O. Kotik, V International Scientific-Practical Conference ‘Conceptual Ways of Science Development’ (May 14–15, 2020) (in Ukrainian).
13. W. Gao, J. Shu, C. Qiu, and Q. Xu, ACS Nano, 6, No. 9: 7806 (2012); https://doi.org/10.1021/nn301888e
14. Andrea F. Young and Philip Kim, Nature Physics, 5: 222 (2009); https://doi.org/10.1038/nphys1198
15. S. P. Repetsky, I. G. Vyshyvana, S. P. Kruchinin, O. Ya. Kuznetsova, and R. M. Melnyk, Metallofiz. Noveishie Tekhnol., 41, Iss. 4: 427 (2019) (in Ukrainian); https://doi.org/10.15407/mfint.41.04.0427.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement