Issues

 / 

2020

 / 

vol. 18 / 

Issue 2

 



Download the full version of the article (in PDF format)

I. V. Kud, L. I. Ieremenko, L. À. Krushynska, D. P. Zyatkevych, Î. B. Zgalat-Lozynskyy, R. V. Lytvyn, Î. V. Myslyvchenko
«Mechanochemical Synthesis of Nanopowders of Boride–Silicide Compositions»
393–402 (2020)

PACS numbers: 61.05.cp, 61.43.Gt, 68.37.Lp, 81.05.Je, 81.07.Wx, 81.20.Wk

Experimental results of an investigation of the mechanochemical synthesis of composite powder of the TiB\(_2\)–MoSi\(_2\) system in a wide concentration range with a MoSi\(_2\) content of 20-60 mass.% are presented. As shown, it is impossible to obtain a two-phase TiB\(_2\)–MoSi\(_2\) composite powder during mechanosynthesis of multicomponent (Ti + B + Mo + Si) reaction mixtures in the concentration range 40-80 mass.% TiB\(_2\), and the final product is a mixture of the following phases: the solid solution (Ti,Ìî)B\(_2\), Mo\(_3\)Si, Mo\(_5\)Si3, MoB\(_2\). For the (Ti + B + MoSi\(_2\)) reaction mixture, a two-phase composite powder (TiB\(_2\) and MoSi\(_2\)) forms within 30 min at the ball-to-powder mass ratio 10:1. The results of mathematical modelling of the distribution of contacts between powder particles of the reaction mixtures agree well with the experimental results of mechanosynthesis.

Keywords: mechanosynthesis, composite powders, titanium boride, molybdenum disilicide, contacts, mathematical modelling

https://doi.org/10.15407/nnn.18.02.393

References
1. G. N. Makarenko, L. A. Krushinskaya, I. I. Timofeeva, V. E. Matsera, M. A. Vasil'kivska, and I. V. Uvarova, Powder Metall. Met. Ceram., 53, Nos. 9-10: 514 (2015). https://doi.org/10.1007/s11106-015-9645-3
2. T. I. Serebryakova, V. A. Neronov, and P. D. Peshev, Vysokotemperaturnyye Boridy (Moscow: Metallurgiya: 1991) (in Russian).
3. J. Xu, S. Jiang, and Y. Wang, ACS Appl Mater. Inter., 2, No. 1: 301 (2010). https://doi.org/10.1021/am900794f
4. M. Khail, M. Beaudhuin, B. Villeroy, D. Ravot, and R. Viennois, J. Alloys Compd., 662: 150 (2016). https://doi.org/10.1016/j.jallcom.2015.12.048
5. G. N. Makarenko, L. A. Krushinskaya, I. I. Timofeeva, M. A. Vasil'kovskaya, V. E. Matsera, D. P. Zyatkevich, V. K. Medyukh, R. M. Medyukh, V. F. Labunets, and I. V. Uvarova, Powder Metall. Met. Ceram., 56, Nos. 9- 10: 487 (2017).
6. T. S. R. Ch. Murthy, B. Basu, R. Balasubramaniam, A. K. Suri, C. Subramanian, and R. K. Fotedar, J. Am. Ceram. Soc., 89, No. 1: 131 (2006). https://doi.org/10.1111/j.1551-2916.2005.00652.x
7. I. Kud, L. Ieremenko, L. Likhoded et al., Am. J. Mater. Sci., 2, No. 6: 202 (2012). https://doi.org/10.5923/j.materials.20120206.06
8. Â. K. Yen, J. Appl. Phys., 89, No. 2: 1477 (2001). https://doi.org/10.1063/1.1333027
9. B. K. Yen, T. Aizawa, and J. Kihara, Mater. Sci. Eng., A220, Nos. 1-2: 8 (1996).
10. Z. Munir and V. Anselmi-Tamburini, Mater. Sci. Rep., 3: 277 (1989). https://doi.org/10.1016/0920-2307(89)90001-7
11. I. V. Kud', L. I. Ieremenko, L. S. Lykhodid, M. A. Vasylkivska, D. P. Zyatkevych, and I. V. Uvarova, Powder Metall. Met. Ceram., 58, Nos. 3-4: 140 (2019). https://doi.org/10.1007/s11106-019-00057-0
12. G. B. Schaffer and P. G. McCormick, Scr. Metall., 23, No. 6: 835 (1989). https://doi.org/10.1016/0036-9748(89)90255-X
13. C. Gras, F. Charlot, E. Gaffet, F. Bernard, and J. C. Niepce, Acta Mater., 47, No. 7: 2113 (1999). https://doi.org/10.1016/S1359-6454(99)00084-1
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement