Issues

 / 

2019

 / 

vol. 17 / 

Issue 4

 



Download the full version of the article (in PDF format)

L. M. Yashchenko, L. O. Vorontsova, T. T. Alekseeva, T. V. Tsebrienko, L. P. Steblenko, A. M. Kuryliuk, O. O. Brovko
«The Prospect of Using Ti-Containing Epoxyurethane Composites in Solar Energy»
747–760 (2019)

PACS numbers: 68.08.Bc, 81.07.Pr, 81.20.Fw, 82.35.Gh, 82.35.Lr, 82.35.Np, 84.60.Jt

By means of the sol–gel method, titanium-containing epoxyurethane oligomers (Ti–EUO) with different content of polytitanium oxide (-TiO\(_2\)-\()_n\) are synthesized. Based on them, the anhydride curing epoxy urethane polymers (Ti–EU) are obtained. As determined by means of the light microscopy method, the samples of polymer films are transparent and homogeneous. The introduction of polytitanium oxide into the structure of the epoxy urethane polymer increases hydrophobicity and reduces water absorption, increases the hardness and adhesion. Investigation of the optical characteristics of Ti–EU polymers has shown that the introduction of small additions of polytitanium oxide leads to a significant increase in the light transmittance from 59% for the initial epoxyurethane to 88% for Ti–EU, and to the shift of its spectral dependence to the short-wave region that gives the prospect of their using as protective optically-transparent coatings for silicon solar cells (SE). The study of the electrophysical characteristics of the ‘solar-Si+Ti–EU’ structure has shown that the lifetime of nonequilibrium charge carriers increases significantly for coated solar-Si, indicating the prospect and the opportunity of increasing the efficiency of the SE.

Keywords: sol–gel method, epoxyurethane composites, solar-Si, hardness, wettability, light transmission, electrophysical characteristics

https://doi.org/10.15407/nnn.17.04.747

References
1. Functional Polymer Coatings: Principles, Methods, and Applications (Eds. L. Wu and J. Baghdachi) (John Wiley & Sons: 2015).
2. G. Malucelli, Coatings, 6, No. 1: 10(2016); https://doi.org/10.3390/coatings6010010.
3. M. Sangermano and M. Messori, Polymer Nanocomposite Coatings (CRC Press: 2016), Ch. 4.
4. Organic-Inorganic Hybrid Nanomaterials (Eds. S. Kalia and Y. Haldorai) (Switzerland: Springer: 2015).
5. R. B. Figueira, C. J. R. Silva, and E. V. Pereira, Journal of Coatings Technology and Research, 12, No. 1: 1 (2015); doi:10.1007/s11998-014-9595-6.
6. S. Li, L. M. Meng, M. S. Toprak, D. K. Kim, and M. Muhammed, Nano Reviews, 1: 5214 (2010); doi: 10.3402/nano.v1i0.5214.
7. H. Benes, J. Galy, J. F. Gerard, J. Plestil, and L. Valette, Journal of Applied Polymer Science, 125, No. 2: 1000(2012); https://doi.org/10.1002/app.36296.
8. G. Griffini and S. Turri, Journal of Applied Polymer Science, 133, No. 11: 43080 (2016); https://doi.org/10.1002/app.43080.
9. S. Gupta, P. C. Ramamurthy, and G. Madras, Polymer Chemistry, 2, No. 1: 221 (2011); doi: 10.1039/C0PY00270D.
10. S. Pandey and S. B. Mishra, Journal of Sol–Gel Science and Technology, 59, No. 1: 73 (2011); doi: 10.1007/s10971-011-2465-0.
11. F. Bondioli, M. E. Darecchio, A. S. Luyt, and M. Messori, Journal of Applied Polymer Science, 122, No. 3: 1792 (2011); https://doi.org/10.1002/app.34264.
12. A. Serra, X. Ramis, and X. Fernandez-Francos, Coatings, 6, No. 1: 8 (2016); https://doi.org/10.3390/coatings6010008.
13. L. P. Steblenko, O. O. Korotchenkov, A. O. Podolyan, T. T. Todosiychuk, L. M. Yashchenko, A. N. Kuryliuk, D. V. Kalinichenko, Yu. L. Kobzar, L. O. Voronzova, O. M. Krit, and S. M. Naumenko, Sposib Pokrashchennya Elektrofizychnykh Kharakterystyk Sonyachnykh Elementiv (Patent 110584. 2016) (in Ukrainian); Л. П. Стебленко, О. О. Коротченков, А. О. Подолян, Т. Т. Тодосійчук, Л. М. Ященко, А. I. Курилюк, Д. В. Калініченко, Ю. Л. Кобзар, Л. О. Воронцова, О. М. Кріт, С. М. Iауменко, Спосіб покращення електрофізичних характеристик сонячних елементів (Патент 110584. 2016); http://uapatents.com/4-110584-sposib-pokrashhennyaelektrofizichnikh-kharakteristik-sonyachnikh-elementiv.html.
14. L. P. Steblenko, O. A. Korotchenkov, A. A. Podolyan, L. M. Yashchenko, D. V. Kalinichenko, A. N. Kuryliuk, Yu. L. Kobzar, A. N. Gorbatenko, A. N. Krit, and S. N. Naumenko, Journal of Nano- and Electronic Physics, 7, No. 2: 02025 (2015); https://jnep.sumdu.edu.ua/download/numbers/2015/2/articles/en/jnep_eng _2015_V7_No2_02025_Steblenko.pdf.
15. L. P. Steblenko, A. A. Podolyan, L. N. Yashchenko, D. V. Kalinichenko, A. N. Kuryliuk, Yu. L. Kobzar, L. A. Voronzova, V. N. Kravchenko, S. N. Naumenko, and A. N. Krit, Springer Proceedings in Physics, 195: 283 (2017); https://doi.org/10.1007/978-3-319-56422-7_20.
16. Y. Y. Yu, Y. C. Rao, and C. C. Chang, Thin Solid Films, 546: 236 (2013); http://dx.doi.org/10.1016/j.tsf.2013.05.038.
17. J. L. H. Chau, C. T. Tung, Y. M. Lin, and A. K. Li, Materials Letters, 62, No. 19: 3416 (2008); https://doi.org/10.1016/j.matlet.2008.02.058.
18. T. T. Alekseeva, I. S. Martynyuk, N. V. Babkina, and G. Y. Menzheres, Glass Physics and Chemistry, 40, No. 1: 17 (2014); doi: 10.1134/S1087659614010039.
19. T. V. Tsebrienko, T. T. Alekseeva, N. V. Babkina, and N. V. Yarovaya, J. Advanced Engineering, Management and Science, 3, No. 3: 226 (2017); https://dx.doi.org/10.24001/ijaems.3.3.13.
20. D. Pinto, L. Bernardo, A. Amaro, and S. Lopes, Construction and Building Materials, 95: 506 (2015); https://doi.org/10.1016/j.conbuildmat.2015.07.124.
21. P. K. Ghosh, A. Pathak, M. S. Goyat, and S. Halder, Journal of Reinforced Plastics and Composites, 31, No. 17: 1180 (2012); https://doi.org/10.1177/0731684412455955.
22. V. F. Babich, L. N. Perepelitsina, A. L. Tolstov, and Yu. S. Lipatov, Kauchuk i Rezina, No. 4: 7 (2005) (in Russian); В. O. Бабич, Л. I. Перепелицына, А. Л. Толстов, Ю. С. Липатов, Каучук и резина, 4: 7 (2005).
23. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nature Methods, 9, No. 7: 671 (2012); https://doi.org/10.1038/nmeth.2089.
24. A. F. Stalder, G. Kulik, D. Sage, L. Barbieri, and P. Hoffmann, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 286, Nos. 1–3: 92 (2006); doi:10.1016/j.colsurfa.2006.03.008.
25. C. Munakata, S. Nishimatsu, N. Honma, and K. Yagi, Japanese Journal of Applied Physics, 23, No. 11: 1451 (1984); doi:10.1143/jjap.23.1451.
26. T. V. Tsebryenko, T. T. Alekseeva, H. Ya. Menzheres, and S. N. Ostapiuk, Ukrainskii Khimicheskii Zhurnal, 82, No. 10: 96 (2016) (in Russian); Т. В. Цебриенко, Т. Т. Алексеева, A. Я. Менжерес, С. I. Остапюк, Укр. хим. журнал, 82, No. 10: 96 (2016).
27. L. C. Sawyer, D. T. Grubb, and G. F. Meyers, Polymer Mmicroscopy (Springer Science & Business Media: 2008).
28. H. P. Peka and V. I. Strikha, Poverkhnevi ta Kontaktni Yavyshcha u Napivprovidnykakh (Kyiv: Lybid: 1992) (in Ukrainian); A. П. Пека, В. І. Стріха, Поверхневі та контактні явища у напівпровідниках (Київ: Либідь: 1992).
29. R. S. Bonilla, B. Hoex, P. Hamer, and P. R. Wilshaw, Phys. Status Solidi A, 214, No. 7: 1700293 (2017); https://doi.org/10.1002/pssa.201700293.
30. A. F. Thomson and K. R. McIntosh, Prog. Photovoltaics Res. Appl., 20, No. 3: 343 (2012); https://doi.org/10.1002/pip.1132.
31. B. Liao, B. Hoex, A. G. Aberle, D. Chi, and C. S. Bhatia, Appl. Phys. Lett., 104, No. 25: 253903 (2014); https://doi.org/10.1063/1.4885096.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
© NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 2019

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement