Issues

 / 

2019

 / 

vol. 17 / 

Issue 3

 



Download the full version of the article (in PDF format)

L. S. Monastyrskii, I. B. Olenych, B. S. Sokolovskii
«Modelling of the Electrostatic Potential Distribution in Porous Silicon»
0519–0528 (2019)

PACS numbers: 41.20.Cv, 61.43.Gt, 72.20.Dp, 73.50.Bk, 73.63.-b, 85.30.Tv

In this study, the field-effect peculiarities in porous silicon with a cylindrical pore shape are theoretically studied. The spatial distribution of the potential is obtained by means of the analytical solution of the Poissons equation within the linear approximation. The coordinate dependences of the electrostatic potential are analysed for different values of the pore radius and the distance between pores. As established, based on the obtained dependences, the Debye screening length depends not only on the physical parameters of the semiconductor but also on the surface curvature. So, a decrease in the pore radius leads to a decrease in the Debye screening length. In addition, an increase in the surface curvature causes a reduction in a surface potential. The carrier redistribution, which accompanies the field effect, gives rise to changing the electrical conductivity of the porous layer. The largest relative change in conductivity corresponds to a considerable surface curvature and a small distance between the pores. The obtained results can be used to improve the functional characteristics of gas-adsorption sensors based on the porous silicon.

Keywords: porous silicon, field effect, modelling, electrostatic potential, electrical conductivity, Debye screening length

https://doi.org/10.15407/nnn.17.03.519

References
1. O. Bisi, S. Ossicini, and L. Pavesi, Surf. Sci. Rep., 38: 1 (2000). http:://doi.org/10.1016/S0167-5729(99)00012-6
2. H. F ll, M. Christophersen, J. Carstensen, and G. Hasse, Mater. Sci. Eng. R, 39: 93 (2002). http:://doi.org/10.1016/S0927-796X(02)00090-6
3. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys., 82: 909 (1997). http:://doi.org/10.1063/1.366536
4. S. Ozdemir and J. Gole, Curr. Opin. Solid St. Mater. Sci., 11: 92 (2007). http:://doi.org/10.1016/j.cossms.2008.06.003
5. C. Baratto, G. Faglia, G. Sberveglieri, Z. Gaburro, L. Pancheri, C. Oton, and L Pavesi, Sensors, 2: 121 (2002). http:://doi.org/10.3390/s20300121
6. I. B. Olenych, L. S. Monastyrskii, O. I. Aksimentyeva, and B. S. Sokolovskii, Ukr. J. Phys., 56: 1198 (2011) (in Ukrainian).
7. F. A. Harraz, Sensor. Actuat. B Chem., 202: 897 (2014). http:://doi.org/10.1016/j.snb.2014.06.048
8. M. Chiesa, G. Amato, L. Boarino, E. Garrone, F. Geobaldo, and E. Giamello, Angew. Chemie Int. Ed., 42: 5032 (2003). http:://doi.org/10.1002/anie.200352114
9. I. B. Olenych, L. S. Monastyrskii, O. I. Aksimentyeva, and B. S. Sokolovskii, Electron. Mater. Lett., 9: 257 (2013). http:://doi.org/10.1007/s13391-012-2126-7
10. A. S. Vorontsov, L. A. Osminkina, A. E. Tkachenko, E. A. Konstantinova, V. G. Elenskii, V. Yu. Timoshenko, and P. K. Kashkarov, Semiconductors, 41: 953 (2007). http:://doi.org/10.1134/S1063782607080167
11. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (New Jersey: Wiley: 2007).
12. L. S. Monastyrskii, B. S. Sokolovskii, Ya. V. Boyko, and M. P. Alekseichyk, Appl. Nanosci. (2019). http:://doi.org/10.1007/s13204-019-00995-6
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
© NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 2019
© L. S. Monastyrskii, I. B. Olenych, B. S. Sokolovskii, 2019

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement