vol. 17 / 

Issue 3


Download the full version of the article (in PDF format)

O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, I. I. Medvid, I. S. Zvizlo, and D. S. Leonov
«Influence of the Obtaining Conditions on the Photoconductivity of Thin \(\beta-Ga_2O_3\) Films»
0483–0490 (2019)

PACS numbers: 61.72.jd, 68.55.J-, 73.50.Pz, 73.61.Ng, 78.55.-m, 81.15.Gh, 81.40.Tv

The photoconductivity of thin \(\beta-Ga_2O_3\) films obtained by radio-frequency (RF) ion-plasma sputtering, depending on the conditions of obtaining, is investigated. As established, the highest value of photoconductivity current is observed in freshly deposited films and decreases when films are reduced in a hydrogen atmosphere, at annealing in an argon atmosphere and especially in an oxygen atmosphere. The analysis of spectral shift of the photoconductivity maximum of the excitation spectrum via the heat treatment atmosphere is carried out.

Keywords: gallium oxide, thin films, photoconductivity

1. K. Matsuzaki, H. Yanagi, T. Kamiya, H. Hiramatsu, K. Nomura, M. Hirano, and H. Hosono, Appl. Phys. Lett., 88, No. 9: 092106 (2006).
2. N. D. Cuong, Y. W. Park, and S. G. Yoon, Sensors and Actuators B, 140, No. 1: 240 (2009).
3. M. Orita, H. Ohta, M. Hirano, and H. Hosono, Appl. Phys. Lett., 77, No. 25: 4166 (2000).
4. J.-G. Zhao, Z.-X. Zhang, Z.-W. Ma, H.-G. Duan, X.-S. Guo, and E.-Q. Xie, Chinese Phys. Lett., 25, No. 10: 3787 (2008).
5. Y. Tokida and S. Adachi, Jpn. J. Appl. Phys., 52, No. 10R: 101102 (2013).
6. P. Wellenius, A. Suresh, J. V. Foreman, H. O. Everitt, and J. F. Muth, Mater. Sci. Eng. B, 146: 252 (2008).
7. T. Minami, T. Shirai, T. Nakatani, and T. Miyata, Jpn. J. Appl. Phys., 39, No. 6A: L524 (2000).
8. O. M. Bordun, I. Yo. Kukharskyy, B. O. Bordun, and V. B. Lushchanets, J. Appl. Spectrosc., 81, No. 5: 771 (2014).
9. S. J. Pearton, J. Yang, P. H. Cary IV, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Appl. Phys. Rev., 5, No. 1: 011301 (2018).
10. I. B. Vendik, A. N. Ermolenko, V. V. Esipov, B. M. Pchelkin, and M. F. Sitnikova, Zhurn. Tekhn. Fiz., 58, No. 12: 2323 (1988) (in Russian).
11. W. Sinkler, L. D. Marks, D. D. Edwards, T. O. Mason, K. R. Poeppelmeier, Z. Hu, and J. D. Jorgensen, J. Solid State Chem., 136, No. 1: 145 (1998).
12. V. I. Vasyltsiv, Ya. I. Rym, and Ya. M. Zakharko, phys. status solidi (b), 195, No. 2: 653 (1996).
13. V. V. Tokii, V. I. Timchenko, and V. A. Soroka, Phys. of Sol. State, 45, No. 4: 600 (2003).
14. T. V. Blank and Yu. A. Gol dberg, Semiconductors, 41, No. 11: 1281 (2007).
15. O. M. Bordun, V. G. Bihday, and I. Yo. Kukharskyy, J. Appl. Spectrosc., 80, No. 5: 721 (2013).
16. L. Binet and D. Gourier, J. Phys. Chem. Solids, 59, No. 8: 1241 (1998).
17. K. Shimamura, E. G. V llora, T. Ujiie, and K. Aoki, Appl. Phys. Lett., 92, No. 20: 201914 (1) (2008).
18. G. Guzman-Navarro, M. Herrera-Zaldivar, J. Valenzuela-Benavides, and D. Maestre, J. Appl. Phys., 110, No. 3: 034315 (2011).
19. O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, and I. I. Medvid, J. Appl. Spectrosc., 84, No. 1: 46 (2017).
20. O. M. Bordun, B. O. Bordun, I. I. Medvid, and I. Yo. Kukharskyy, Acta Physica Polonica, 134, No. 4: 910 (2018).
21. O. M. Bordun, I. Yo. Kukharskyy, B. O. Bordun, and V. B. Lushchanets, Phys. and Chem. of Sol. State, 16, No. 2: 302 (2015).
22. S. K. Sampath and J. F. Cordaro, J. Am. Ceram. Soc., 81, No. 3: 649 (1998).
23. F. Litimein, D. Rached, R. Khenata, and H. Baltache, J. Alloys Comp., 488, No. 1: 148 (2009).
24. M. Michling and D. Schmei er, IOP Conf. Ser.: Mater. Sci. Eng., 34: 012002 (2012).
25. H. H. Tippins, Phys. Rev., 140, No. 1A: A316 (1965).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
© NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 2019
© O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, I. I. Medvid, I. S. Zvizlo, D. S. Leonov, 2019

E-mail: Phones and address of the editorial office About the collection User agreement