Issues

 / 

2019

 / 

vol. 17 / 

Issue 3

 



Download the full version of the article (in PDF format)

O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, I. I. Medvid, I. S. Zvizlo, and D. S. Leonov
«Influence of the Obtaining Conditions on the Photoconductivity of Thin \(\beta-Ga_2O_3\) Films»
0483–0490 (2019)

PACS numbers: 61.72.jd, 68.55.J-, 73.50.Pz, 73.61.Ng, 78.55.-m, 81.15.Gh, 81.40.Tv

The photoconductivity of thin \(\beta-Ga_2O_3\) films obtained by radio-frequency (RF) ion-plasma sputtering, depending on the conditions of obtaining, is investigated. As established, the highest value of photoconductivity current is observed in freshly deposited films and decreases when films are reduced in a hydrogen atmosphere, at annealing in an argon atmosphere and especially in an oxygen atmosphere. The analysis of spectral shift of the photoconductivity maximum of the excitation spectrum via the heat treatment atmosphere is carried out.

Keywords: gallium oxide, thin films, photoconductivity

https://doi.org/10.15407/nnn.17.03.483

References
1. K. Matsuzaki, H. Yanagi, T. Kamiya, H. Hiramatsu, K. Nomura, M. Hirano, and H. Hosono, Appl. Phys. Lett., 88, No. 9: 092106 (2006). https://doi.org/10.1063/1.2179373
2. N. D. Cuong, Y. W. Park, and S. G. Yoon, Sensors and Actuators B, 140, No. 1: 240 (2009). https://doi.org/10.1016/j.snb.2009.04.020
3. M. Orita, H. Ohta, M. Hirano, and H. Hosono, Appl. Phys. Lett., 77, No. 25: 4166 (2000). https://doi.org/10.1063/1.1330559
4. J.-G. Zhao, Z.-X. Zhang, Z.-W. Ma, H.-G. Duan, X.-S. Guo, and E.-Q. Xie, Chinese Phys. Lett., 25, No. 10: 3787 (2008).
5. Y. Tokida and S. Adachi, Jpn. J. Appl. Phys., 52, No. 10R: 101102 (2013). https://doi.org/10.7567/JJAP.52.101102
6. P. Wellenius, A. Suresh, J. V. Foreman, H. O. Everitt, and J. F. Muth, Mater. Sci. Eng. B, 146: 252 (2008).
7. T. Minami, T. Shirai, T. Nakatani, and T. Miyata, Jpn. J. Appl. Phys., 39, No. 6A: L524 (2000). https://doi.org/10.1143/JJAP.39.L524
8. O. M. Bordun, I. Yo. Kukharskyy, B. O. Bordun, and V. B. Lushchanets, J. Appl. Spectrosc., 81, No. 5: 771 (2014). https://doi.org/10.1007/s10812-014-0004-9
9. S. J. Pearton, J. Yang, P. H. Cary IV, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Appl. Phys. Rev., 5, No. 1: 011301 (2018). https://doi.org/10.1063/1.5006941
10. I. B. Vendik, A. N. Ermolenko, V. V. Esipov, B. M. Pchelkin, and M. F. Sitnikova, Zhurn. Tekhn. Fiz., 58, No. 12: 2323 (1988) (in Russian).
11. W. Sinkler, L. D. Marks, D. D. Edwards, T. O. Mason, K. R. Poeppelmeier, Z. Hu, and J. D. Jorgensen, J. Solid State Chem., 136, No. 1: 145 (1998). https://doi.org/10.1006/jssc.1998.7804
12. V. I. Vasyltsiv, Ya. I. Rym, and Ya. M. Zakharko, phys. status solidi (b), 195, No. 2: 653 (1996). https://doi.org/10.1002/pssb.2221950232
13. V. V. Tokii, V. I. Timchenko, and V. A. Soroka, Phys. of Sol. State, 45, No. 4: 600 (2003). https://doi.org/10.1134/1.1568996
14. T. V. Blank and Yu. A. Gol dberg, Semiconductors, 41, No. 11: 1281 (2007). https://doi.org/10.1134/S1063782607110012
15. O. M. Bordun, V. G. Bihday, and I. Yo. Kukharskyy, J. Appl. Spectrosc., 80, No. 5: 721 (2013). https://doi.org/10.1007/s10812-013-9832-2
16. L. Binet and D. Gourier, J. Phys. Chem. Solids, 59, No. 8: 1241 (1998). https://doi.org/10.1016/S0022-3697(98)00047-X
17. K. Shimamura, E. G. V llora, T. Ujiie, and K. Aoki, Appl. Phys. Lett., 92, No. 20: 201914 (1) (2008). https://doi.org/10.1063/1.2910768
18. G. Guzman-Navarro, M. Herrera-Zaldivar, J. Valenzuela-Benavides, and D. Maestre, J. Appl. Phys., 110, No. 3: 034315 (2011). https://doi.org/10.1063/1.3620986
19. O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, and I. I. Medvid, J. Appl. Spectrosc., 84, No. 1: 46 (2017). https://doi.org/10.1007/s10812-017-0425-3
20. O. M. Bordun, B. O. Bordun, I. I. Medvid, and I. Yo. Kukharskyy, Acta Physica Polonica, 134, No. 4: 910 (2018). https://doi.org/10.12693/APhysPolA.133.910
21. O. M. Bordun, I. Yo. Kukharskyy, B. O. Bordun, and V. B. Lushchanets, Phys. and Chem. of Sol. State, 16, No. 2: 302 (2015). https://doi.org/10.15330/pcss.16.1.74-78
22. S. K. Sampath and J. F. Cordaro, J. Am. Ceram. Soc., 81, No. 3: 649 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02385.x
23. F. Litimein, D. Rached, R. Khenata, and H. Baltache, J. Alloys Comp., 488, No. 1: 148 (2009). https://doi.org/10.1016/j.jallcom.2009.08.092
24. M. Michling and D. Schmei er, IOP Conf. Ser.: Mater. Sci. Eng., 34: 012002 (2012). https://doi.org/10.1088/1757-899X/34/1/012002
25. H. H. Tippins, Phys. Rev., 140, No. 1A: A316 (1965). https://doi.org/10.1103/PhysRev.140.A316
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
© NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 2019
© O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, I. I. Medvid, I. S. Zvizlo, D. S. Leonov, 2019

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement