Issues

 / 

2019

 / 

vol. 17 / 

Issue 3

 



Download the full version of the article (in PDF format)

Olusola S. Amodu, Tunde V. Ojumu, Seteno K. Ntwampe, Olushola S. Ayanda
«Utilisation of Fly Ash and Magnetite for the Synthesis of Biosurfactant-Modified Magnetic Zeolites by Direct Alkali Fusion»
0439–0452 (2019)

PACS numbers: 68.37.Hk, 68.43.Mn, 68.43.Nr, 78.30.Hv, 81.70.Pg, 82.33.Jx, 82.75.-z

This work presents the synthesis of zeolite (Z), magnetic zeolite (MZ) and biosurfactant-modified magnetic zeolite (BMMZ) by direct fusion of sodium hydroxide, coal fly ash, and magnetite. The precursors and the synthesised zeolites were characterised by scanning electron microscopy (SEM) equipped with an energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Brunauer, Emmett and Teller (BET) surface area analyser. The SEM analysis of Z and BMMZ showed the presence of distinct nanocube structures, while the MZ showed aggregated irregular surfaces with crevices at the surface. XRD indicated that the fly ash consists of sillimanite, quartz and mullite, the sodalite in Z, MZ and BMMZ as indicative of NaOH used in the preparation of the zeolites. The EDS analysis based on the Si/Al classification showed that zeolite X was produced. The functional group signified asymmetric and symmetric stretching vibrations of OH and internal tetrahedron vibrations of SiO and AlO. The modification of the surface of Z with biosurfactant increased the BET surface area by 56.2% in comparison to the unmodified Z. Therefore, the synthesised Z, MZ and BMMZ would be effective for the removal of organic contaminants, owing to excellent and improved properties.

Keywords: adsorbent, biosurfactant-modified zeolite, characterisation, magnetite, nanoparticles

https://doi.org/10.15407/nnn.17.03.439

References
1. A. Feliczak-Guzik, Micropor. Mesopor. Mater., 259: 33 (2017). https://doi.org/10.1016/j.micromeso.2017.09.030
2. A. A. Mahabadi, M. Hajabbasi, H. Khademi, and H. Kazemian, Geoderma, 137: 388 (2007). https://doi.org/10.1016/j.geoderma.2006.08.032
3. M. Khalid, G. Joly, A. Renaud, and P. Magnoux, Ind. Eng. Chem. Res., 43: 5275 (2004). https://doi.org/10.1021/ie0400447
4. C. F. Chang, C. Y. Chang, K. H. Chen, W. T. Tsai, J. L. Shie, and Y. H. Chen, J. Colloid Interface Sci., 277: 29 (2004). https://doi.org/10.1016/j.jcis.2004.04.022
5. E. M. . Kaya, A. S. zcan, . G k, and A. zcan, Adsorption, 19: 879 (2013). https://doi.org/10.1007/s10450-013-9542-3
6. S. Wang and Y. Peng, Chem. Eng. J., 156: 11 (2010). https://doi.org/10.1016/j.cej.2009.10.029
7. I. Ali, M. Asim, and T.A. Khan, J. Environ. Manage., 113: 170 (2012). https://doi.org/10.1016/j.jenvman.2012.08.028
8. D. Sun, X. Zhang, Y. Wu, and X. Liu, J. Hazard. Mater., 181: 335 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.015
9. D. Fungaro, M. Yamaura, and T. Carvalho, Journal of Atomic and Molecular Sciences, 2: 305 (2011). https://doi.org/10.4208/jams.032211.041211a
10. D. A. Fungaro and C. P. Magdalena, Environ. Ecol. Res., 2, No. 2: 97 (2014).
11. J. A. Simpson and R. S. Bowman, J. Contam. Hydrol., 108: 1 (2009). https://doi.org/10.1016/j.jconhyd.2009.05.001
12. Y. Park, G. A. Ayoko, and R. L. Frost, J. Colloid Interface Sci., 354: 292 (2011). https://doi.org/10.1016/j.jcis.2010.09.068
13. . G k, A. S. zcan, and A. zcan, Desalination, 220: 96 (2008). https://doi.org/10.1016/j.desal.2007.01.025
14. Y. H. Shen, Chemosphere, 44: 989 (2001). https://doi.org/10.1016/S0045-6535(00)00564-6
15. C. B. Vidal, G. S. C. Raulino, A. D. da Luz, C. da Luz, R. F. do Nascimento, and D. de Keukeleire, J. Chem. Eng. Data, 59, No. 2: 282 (2013). https://doi.org/10.1021/je400780f
16. Y. Dong, D. Wu, X. Chen, and Y. Lin, J. Colloid Interface Sci., 348: 585 (2010). https://doi.org/10.1016/j.jcis.2010.04.074
17. J. Lin, Y. Zhan, Z. Zhu, and Y. Xing, J. Hazard. Mater., 193: 102 (2011). https://doi.org/10.1016/j.jhazmat.2011.07.035
18. J. Schick, P. Caullet, J. L. Paillaud, J. Patarin, and C. Mangold-Callarec, Micropor. Mesopor. Mater., 142: 549 (2011). https://doi.org/10.1016/j.micromeso.2010.12.039
19. T. Anirudhan and M. Ramachandran, Process Saf. Environ., 95: 215 (2015). https://doi.org/10.1016/j.psep.2015.03.003
20. O. S. Amodu, S. K. Ntwampe, and T. V. Ojumu, BioResources, 9: 3508 (2014). https://doi.org/10.15376/biores.9.2.3508-3525
21. D. Mainganye, T. V. Ojumu, and L. Petrik, Materials, 6: 2074 (2013). https://doi.org/10.3390/ma6052074
22. N. M. Musyoka, L. F. Petrik, W. M. Gitari, G. Balfour, and E. Hums, J. Environ. Sci. Health Part A, 47: 337 (2012). https://doi.org/10.1080/10934529.2012.645779
23. C. D. Williams and C. L. Roberts, Fuel, 88: 1403 (2009). https://doi.org/10.1016/j.fuel.2009.02.012
24. N. M. Musyoka, L. F. Petrik, E. Hums, A. Kuhnt, and W. Schwieger, Res. Chem. Intermed., 41: 575 (2015). https://doi.org/10.1007/s11164-013-1211-3
25. D. Verboekend, N. Nuttens, R. Locus, J. Van Aelst, P. Verolme, J. C. Groen, J. P rez-Ram rez, and B. F. Sels, Chem. Soc. Rev., 45: 3331 (2016). https://doi.org/10.1039/C5CS00520E
26. M. Rivera-Garza, M. Olgu n, I. Garc a-Sosa, D. Alc ntara, and G. Rodr guez-Fuentes, Micropor. Mesopor. Mater., 39: 431 (2000). https://doi.org/10.1016/S1387-1811(00)00217-1
27. Z. Liu, C. Shi, D. Wu, S. He, and B. Ren, J. Nanotechnol. https://doi.org/10.1155/2016/1486107
28. P. Chang and Z. Qin, Int. J. Electrochem. Sci., 12, No. 3: 1846 (2017).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
© NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 2019
© Olusola S. Amodu, Tunde V. Ojumu, Seteno K. Ntwampe, Olushola S. Ayanda, 2019

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement