Issues

 / 

2019

 / 

vol. 17 / 

Issue 2

 



Download the full version of the article (in PDF format)

Viktoriia Yu. Tsuber, Yuliya B. Nikoziat, Larysa M. Kopantseva, Lyubov K. Ishcheykina, Olena D. Ivashchenko
«Effective Atomic Charges on Carbon Atoms in C–H Bonds are Reliable Predictors of Reactivity of Alcohols in Hydrogen-Abstraction Reactions»
381–398 (2019)

PACS numbers: 31.15.A-, 31.15.X-, 81.05.Zx, 82.20.Pm, 82.20.Wt, 82.30.Rs, 87.15.-v

Effective atomic charges on H-bearing carbon atoms are suggested as robust predictors of hydrogen-abstraction reactivity of alcohols. Mulliken partial charges and HOMO energy values are calculated at the RHF 6-31G(d,p) level for 17 monofunctional alcohols and for 13 difunctional alcohols, for which kinetic data are known. As found, the Mulliken charges on carbon atoms are strongly associated with the liability of the C–H bond to undergo hydrogen abstraction. An index of carbon positivity, CP???10x, where x is the effective partial charge on the carbon atom, is proposed for convenient evaluation of the effect of the partial charge of the carbon atom on its reactivity in the hydrogen-abstraction reaction. The sum of all positivity indices, CP total, is strongly associated with the hydrogen-abstraction rate constant of the alcohol and reflects a combined effect of the reactivity of the dominant hydrogen-abstraction channel and the number of H-bearing carbon atoms in the molecule. Thus, CP total is a crucial predictor of reactivity of alcohols in the hydrogen-abstraction reaction.


Key words: hydrogen abstraction, hydroxyl radical, Mulliken charges, reactivity of alcohols.

https://doi.org/10.15407/nnn.17.02.381

References
1. W. Sun, L. Yang, L. Yu, and M. Saeys, J. Phys. Chem., A113: 7852 (2009). https://doi.org/10.1021/jp8090792
2. D. C. Young, Computational Chemistry. A Practical Guide for Applying Techniques to Real-World Problems (New York: Wiley-Interscience: 2001), p. 99.
3. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery,
J. Comput. Chem., 14: 1347 (1993). https://doi.org/10.1002/jcc.540141112
4. M. S. Gordon and M. W. Schmidt, Advances in Electronic Structure Theory: GAMESS a Decade Later. In: Theory and Applications of Computational Chemistry: the First Forty Years
(Eds. C. E. Dykstra, G. Frenking, K. S. Kim, and G.E. Scuseria) (Amsterdam: Elsevier: 2005), p. 1167. https://doi.org/10.1016/B978-044451719-7/50084-6
5. M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, and G. R. Hutchison, J. Cheminform., 4: 17 (2012). https://doi.org/10.1186/1758-2946-4-17
6. B. M. Bode and M. S. Gordon, J. Mol. Graphics Mod., 16: 133 (1998). https://doi.org/10.1016/S1093-3263(99)00002-9
7. F. Martin and H. Zipse, J. Comput. Chem., 26, No. 1: 97 (2005). https://doi.org/10.1002/jcc.20157
8. D. Grosjean, J. Braz. Chem. Soc., 8, No. 4: 433 (1997). https://doi.org/10.1590/S0103-50531997000500002
9. J. A. Seetula, Phys. Chem. Chem. Phys., 2: 3807 (2000). https://doi.org/10.1039/b001350l
10. W. P. L. Carter, K. R. Darnall, R. A. Graham, A. M. Winer, and J. N. Pitts Jr., J. Phys. Chem., 83: 2305 (1979).
11. T. Ohta, H. Bandow, and H. Akimoto, Int. J. Chem. Kinet., 14, No. 2: 173 (1982). https://doi.org/10.1002/kin.550140207
12. R. Atkinson and S. M. Aschmann, Environ. Sci. Technol., 29: 528 (1995). https://doi.org/10.1021/es00002a032
13. H. Niki, P. D. Maker, C. M. Savage, and M. D. Hurley, J. Phys. Chem., 91, No. 8: 2174 (1987). https://doi.org/10.1021/j100292a038
14. T. J. Wallington and M. J. Kurylo, Int. J. Chem. Kinet., 19, No. 11: 1015 (1987). https://doi.org/10.1002/kin.550191106
15. L. Nelson, O. Rattigan, R. Neavyn, H. Sidebottom, J. Treacy, and O. J. Nielsen, Int. J. Chem. Kinet., 22, No. 11: 1111 (1990). https://doi.org/10.1002/kin.550221102
16. E. S. C. Kwok and R. Atkinson, Atmos. Environ., 29: 1685 (1995). https://doi.org/10.1016/1352-2310(95)00069-B
17. A. Monod and J. F. Doussin, Atmos. Environ., 42: 7611 (2008). https://doi.org/10.1016/j.atmosenv.2008.06.005
18. A. Hatipoglu and Z. Cinar, J. Mol. Struct.: THEOCHEM, 631: 189 (2003). https://doi.org/10.1016/S0166-1280(03)00248-3
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement