Issues

 / 

2019

 / 

vol. 17 / 

Issue 2

 



Download the full version of the article (in PDF format)

Djoko Kustono, Poppy Puspitasari, Wahono,, Aris Sandy Setya Ananda, Maizatul Shima Shaharun, Alief Muhammad
«Time Dependence on Magnetic Properties of Nanomaterial Manganese–Zinc Ferrite (Mn0.8Zn0.2Fe2O4) by Co-Precipitation Method»
361–370 (2019)

PACS numbers: 68.55.J-, 75.50.Tt, 75.60.-d, 75.70.-i, 81.20.Ev, 81.20.Fw, 81.40.Rs

Researches on manganese–zinc ferrite Mn0.8Zn0.2Fe2O4 got popular due to its good magnetic properties as a soft magnetic material. Studies on Mn0.8Zn0.2Fe2O4 magnetic properties, especially before and after the sintering process, are required to see its magnetic material characterisation. Therefore, this research focused on manganese–zinc ferrite Mn0.8Zn0.2Fe2O4 characterisations using co-precipitation method with sintering time variations of 3, 4, and 5 hours at 1100?C. Base materials used in this research were manganese oxide (MnO), zinc oxide (ZnO), and iron oxide (Fe2O3). XRD, SEM–EDX, and VSM tests were used to characterise phase, morphology, and magnetic properties. Mn0.8Zn0.2Fe2O4 with 3, 4, and 5 hours holding time sintering process resulted in crystallite size changed into 70.4194 nm, 52.91546 nm, and 26.45 nm. During the holding time of sintering process, the single Mn0.8Zn0.2Fe2O4 phase was formed, the materials were in one lattice, and it has cubic shape structures. Sintering process affects particle bulk size; a higher sintering temperature increases particle bulk size. Materials with holding time sintered that formed a single Mn0.8Zn0.2Fe2O4 phase had higher magnetic retentivity compared to materials before sintering. This is evident by magnetic saturation (Ms) and magnetic remanence (Mr) values that are higher than for materials without sintering. In 3 hours holding time sintering, the sample has a magnetic saturation (Ms) of 54.05 emu/g and a magnetic remanence (Mr) 14.38 emu/g, higher than other variants.


Key words: magnetic properties, manganese–zinc ferrite, co-precipitation, holding time.

https://doi.org/10.15407/nnn.17.02.361

References
1. M. Abdullah, Pengantar Nanosains (Bandung: Penerbit ITB: 2009).
2. G. Schmid, Nanotechnology: Principles and Fundamentals (Weinheim: Wiley-VCH Verlag GmbH& o KGaA: 2008), vol. 1.
3. M. Gurumoorthy, K. Parasuraman, M. Anbarasu, and K. Balamurugan, Nanoparticles by Chemical Co-Precipitation Method, 5, No. 4: 63 (2015).
4. M. Tadic, S. Kralj, M. Jagodic, D. Hanzel, and D. Makovec, Appl. Surf. Sci., 322: 255 (2014). https://doi.org/10.1016/j.apsusc.2014.09.181
5. B. Ramaswamy et al., Nanomedicine Nanotechnology, Biol. Med., 11, No. 7: 1821 (2015). https://doi.org/10.1016/j.nano.2015.06.003
6. A. H. Lu, E. L. Salabas, and F. Sch th, Angew. Chemie—Int. Ed., 46, No. 8: 1222 (2007). https://doi.org/10.1002/anie.200602866
7. L. He, M. S. Wang, J. P. Ge, and Y. D. Yin, Acc. Chem. Res., 45, No. 9: 1431 (2012). https://doi.org/10.1021/ar200276t
8. B. Gleich and J. Weizenecker, Nature, 435, No. 7046: 1214 (2005). https://doi.org/10.1038/nature03808
9. A. Dehghanghadikolaei, J. Ansary, and R. Ghoreishi, Proc. Nat. Res. Soc., 2, No. 6: 02008 (2018). https://doi.org/10.11605/j.pnrs.201802008
10. M. Javad et al., J. Magn. Magn. Mater., 321: 152 (2009).
11. R. R. Shahraki, M. Ebrahimi, S. A. S. Ebrahimi, and S. M. Masoudpanah, J. Magn. Magn. Mater., 324, No. 22: 3762 (2012). https://doi.org/10.1016/j.jmmm.2012.06.020
12. R. R. Muslim, Magnetic Properties of Manganese Ferrite Nanoparticles: Thesis (India: Thapar University: 2012).
13. I. Sharifi, H. Shokrollahi, and S. Amiri, J. Magn. Magn. Mater., 324, No. 6: 903 (2012). https://doi.org/10.1016/j.jmmm.2011.10.017
14. H. Shokrollahi, J. Magn. Magn. Mater., 320, Nos. 3–4: 463 (2008).
15. A. Zapata and G. Herrera, Ceram. Int., 1: 2013.
16. P. Hu et al., J. Magn. Magn. Mater., 322, No. 1: 173 (2010).
17. R. Desai, V. Davariya, and K. Parekh, Pramana, 73, No. 4: 765 (2009). https://doi.org/10.1007/s12043-009-0144-2
18. W. H. Lee, C. S. Hong, and S. Y. Chang, Archives of Metallurgy and Materials, 60: Iss. 2: 9 (2015).
19. C. Venkataraju and R. Paulsingh, Journal of Nanoscience, 2014: 5 (2014). https://doi.org/10.1155/2014/815385
20. P. Puspitasari, A. Muhammad, H. Suryanto, and A. Andoko, High Temp. Mater. Process. An Int. Q. High-Technology Plasma Process. (2018), vol. 22, p. 239. https://doi.org/10.1615/HighTempMatProc.2018029155
21. P. Mathur, A. Thakur, and M. Singh, J. Magn. Magn. Mater., 320, No. 7: 1364 (2008). https://doi.org/10.1016/j.jmmm.2007.11.008
22. P. Puspitasari et al., Materials Science Forum, 857: 146 (2016). https://doi.org/10.4028/www.scientific.net/MSF.857.146
23. N. Yahya and P. Puspitasari, J. Nano Res., 21: 131 (2012). https://doi.org/10.4028/www.scientific.net/JNanoR.21.131
24. M. M. Rashad and M. I. Nasr, Nanopowders Synthesized by Co-Precipitation Method, 8, No. 3: 325 (2012). https://doi.org/10.1007/s13391-012-1104-4
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement