Issues

 / 

2019

 / 

vol. 17 / 

Issue 2

 



Download the full version of the article (in PDF format)

V. M. Boichuk, Kh. V. Bandura, V. O. Kotsyubynsky, I. P. Yaremiy, S. V. Fedorchenko
«Synthesis, Structural, Morphological, Electrical, and Electrochemical Properties of Ni(OH)2/Reduced Graphene Oxide Composite Materials»
299–310 (2019)

PACS numbers: 68.37.Hk, 72.80.Tm, 77.84.Lf, 81.05.U-, 81.16.-c, 82.45.Yz, 82.47.Uv

The paper presents the experimental results of the composite-materials’ synthesis on the base of nickel hydroxide ?-Ni(OH)2 and reduced graphene oxide using ultrasound dispersion of hydrothermally obtained ?-Ni(OH)2 and previously chemically reduced graphene oxide. The synthesized material is investigated by XRD, SEM, and impedance spectroscopy. The increasing of composite dispersion degree at increasing of carbon-component content is observed. The electrical conductivity of pure ?-Ni(OH)2 and rGO, and ?-Ni(OH)2/rGO composite materials at different ratios of components is analysed at different frequencies in the temperature range of 25–200?C. The decrease in the activation energy of an electric conductivity for the ?-Ni(OH)2/rGO nanocomposite at the component ratio of 1:2, in comparison with pure rGO, is observed.


Key words: nickel hydroxide, reduced graphene oxide, ultrasound dispersion, hydrothermal synthesis, electrical conductivity, electrochemical properties.

https://doi.org/10.15407/nnn.17.02.299

References
1. L. L. Zhang and X. S. Zhao, Chem. Soc. Rev., 38, No. 9: 2520 (2009). https://doi.org/10.1039/b813846j
2. E. Frackowiak, Phys. Chem. Chem. Phys., 9, No. 15: 1774 (2007). https://doi.org/10.1039/b618139m
3. H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, and R. S. Ruoff, Nat. Commun., 5: 3317 (2014).
4. A. Gonz lez, E. Goikolea, J. A. Barrena, and R. Mysyk, Renewable Sustainable Energy Rev., 58: 1189 (2016). https://doi.org/10.1016/j.rser.2015.12.249
5. L. O. Shyyko, V. O. Kotsyubynsky, I. M. Budzulyak, and P. Sagan, Nanoscale Res. Lett., 11, No. 1: 243 (2016). https://doi.org/10.1186/s11671-016-1451-4
6. L. Soserov, T. Boyadzhieva, V. Koleva, A. Stoyanova, and R. Stoyanova, ECS Trans., 74, No. 1: 213 (2016). https://doi.org/10.1149/07401.0213ecst
7. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, and J. M. Tour, ACS Nano, 4, No. 8: 4806 (2010). https://doi.org/10.1021/nn1006368
8. W. Kraus and G. Nolze, J. Appl. Crystallogr., 29, No. 3: 301 (1996). https://doi.org/10.1107/S0021889895014920
9. S. Deabate, F. Henn, S. Devautour, and J. C. Giuntini, J. Electrochem. Soc., 150, No. 6: J23 (2003). https://doi.org/10.1149/1.1573203
10. J. C. Dyre and T. B. Schroder, Rev. Mod. Phys., 72, No. 3: 873 (2000). https://doi.org/10.1103/RevModPhys.72.873
11. A. Jonscher, J. Non-Cryst. Solids, 8, No. 10: 293 (1972). https://doi.org/10.1016/0022-3093(72)90151-2
12. N. Naresh and R. Bhrowmik, J. Phys. Chem. Solids, 73, No. 2: 330 (2012). https://doi.org/10.1016/j.jpcs.2011.10.014
13. F. Wu, A. Xie, M. Sun, Y. Wang, and M. Wang, J. Mater. Chem. A, 3, No. 27: 14358 (2015). https://doi.org/10.1039/C5TA01577D
14. K. Chakraborty, S. Chakrabarty, T. Pal, and S.Ghosh, New J. Chem., 41 No. 11: 4662 (2017). https://doi.org/10.1039/C6NJ04022E
15. J. Lazarte, R. Dipasupil, G. Pasco, R. Eusebio, A. Orbecido, R. A. Doong, and L. Bautista-Patacsil, Nanomater., 8, No. 11: 934 (2018). https://doi.org/10.3390/nano8110934
16. M. Aghazadeh, A. N. Golikand, and M. Ghaemi, Int. J. Hydrogen Energy, 36, No. 14: 8674 (2011). https://doi.org/10.1016/j.ijhydene.2011.03.144
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement