vol. 17 / 

Issue 1


Download the full version of the article (in PDF format)

V. V. Kidalov, A. F. Dyadenchuk, Yu. Yu. Bacherikov, A. G. Zhuk, V. A. Baturin, I. V. Rogozin, O. Y. Karpenko, and Vit. V. Kidalov
«Properties of the ZnO Films Obtained on Mesoporous Si Substrates by means of a Magnetron Sputtering»
111–122 (2019)

PACS numbers: 68.37.Hk, 78.30.Fs, 78.55.Et, 78.55.Mb, 78.67.Pt, 78.67.Rb, 81.15.Cd

The processes of formation of zinc oxide by the method of reactive magnetron high-frequency sputtering on mesoporous substrates of silicon with orientation (100) and (111) are investigated. Porous silicon specimens are obtained by electrochemical etching using silicon plates of n-type orientation conductivity (100) with a specific resistance of 1.01.5 \({\Omega}-\)cm. The anodizing process is carried out using an electrolyte solution consisting of hydrofluoric acid (HF) and ethanol (C2H5OH) in a 1:1 ratio. The current density is J = 31.64 mA/cm2. The diameter of the substrate pores is of 1520 nm. The ZnO film coating is performed by reactive magnetron high-frequency sputtering of the zinc target. Before the process of applying films, the vacuum system is pumped to a level of 10?3 Pa. The substrate temperature is of 300?C. Spray time is 20 minutes. The surface and cross-sectional studies of ZnO/porous-Si/Si samples show a significant change in surface morphology after synthesis. The film has a columnar structure. The thin film of ZnO is closely tied to the porous silicon substrate, and the gap is not detected in the interface. If the Si(100) substrate is used, the diameter of the crystallites is of ??200 nm, while using the substrate Si(111), it is not exceed 100 nm. As shown by x-ray studies of ZnO, it has a polycrystalline nature with a hexagonal wurtzite-type lattice. The deformation value of a ZnO film grown on porous silicon along the c-axis is calculated. The low value of compression strain (0.36%) shows that the ZnO film grows along the c-axis and indicates the fabrication of a high-quality crystal. The average crystallite size is of about 50200 nm. The micronutrient analysis reveals practically the ideal stoichiometry of ZnO grown on porous-Si/Si. ZnO films show a slight peak in the green (500530 nm) and more pronounced in the yelloworange (590620 nm) regions of the spectrum.

Keywords: ZnO film, porous substrate Si, method of reactive magnetron RF sputtering

1. N. R. Aghamalyan, R. K. Hovsepyan, and S. I. Petrosyan, Journal of Contemporary Physics (Armenian Academy of Sciences), 43: No. 4: 177 (2008).
2. D. Strykov, G. Snider, D. Stewart, and S. Williams, Nature, 453: 80 (2008).
3. Dae-Kue Hwang, Min-Suk Oh, Jae-Hong Lim, and Seong-Ju Park, Journal of Physics D: Applied Physics, 40: 387 (2007).
4. K. M. Sandeep, Shreesha Bhat, and S. M. Dharmaprakash, Journal of Physics and Chemistry of Solids, 104: 36 (2017).
5. S. Mridha and D. Basak, J. Applied Physics, 101: 083102 (2007).
6. A. D. Pogrebnyak, A. A-K. M. Muhammed, and Yu. S. Bukalceva, PSE, 8, No. 4: 348 (2010) (in Russian).
7. R. P. Doherty, Yuekui Sun, Ye Sun, J. L. Warren, N. A. Fox, D. Cherns, and M. N. R. Ashfold, Applied Physics A, 89, No. 1: 49 (2007).
8. Xianqi Wei, Ranran Zhao, Minghui Shao, Xijin Xu, and Jinzhao Huang, Nanoscale Res. Lett, 8, No. 1: 112 (2013).
9. A. Kh. Abduev, A. K. Akhmedov, A. Sh. Asvarov, and S. Sh. Makhmudov, J. Nano- Electron. Phys., 10, No. 2: 02041 (2018) (in Russian).
10. C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, and J. Geurts, (Berlin: Springer) 359 (2010).
11. S. Nishino, C. Jacob, Y. Okui, S. Ohshima, and Y. Masuda, J. Cryst. Growth, 237-239: 1250 (2002).
12. S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, phys. status solidi, 56, No. 8: 1457 (2014) (in Russian).
13. V. V. Kidalov, G. A. Sukach, A. S. Revenko, and A. D. Bayda, phys. stat. sol. (a), 202: 1668 (2005).
14. V. V. Kidalov, G. A. Sukach, A. S. Revenko, and E. P. Potapenko, Semiconductors, 37, No. 11: 1303 (2003) (in Russian).
15. V. V. Kidalov, G. A. Sukach, and A. S. Revenko, Russian Journal of Physical Chemistry, 77: 1677 (2003).
16. V. V. Kidalov, S. A. Kukushkin, A. V. Osipov, A. V. Redkov, A. S. Grashchenko, I. P. Soshnikov, M. E. Boiko, M. D. Sharkov, and A. F. Dyadenchuk, ECS J. of Solid State Science and Technology, 7, No. 4: P1 (2018).
17. V. V. Kidalov, S. A. Kukushkin, A. V. Osipov, A. V. Redkov, A. S. Grashchenko, I. P. Soshnikov, M. E. Boiko, M. D. Sharkov, and A. F. Dyadenchuk, Materials Physics and Mechanics, 36: 39 (2018); 18. S. A. Kukushkin, Sh. Sh. Sharofidinov, A. V. Osipov, A. V. Redkov, V. V. Kidalov, A. S. Grashchenko, I. P. Soshnikov, and A. F. Dyadenchuk, ECS J. of Solid State Sci. Technol., 7, No. 9: P480 (2018).
19. Uday Muhsin Nayef, Mohammed Waleed Muayad, and Haider Amer Khalaf, Int. J. Electrochem. Sci., 9: 2278 (2014).
20. J. Serrano, F. J. Manjon, A. H. Romero, F. Widulle, R. Lauck, and M. Cardona, Phys. Rev. Lett., 90: 055510 (2003).
21. D. Kovalev, H. Heckler, G. Polisski, and F. Koch, phys. status solidi, 215, No. 2: 871 (1999).<871::AID-PSSB871>3.0.CO;2-9
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: Phones and address of the editorial office About the collection User agreement