Issues

 / 

2018

 / 

vol. 16 / 

Issue 4

 



Download the full version of the article (in PDF format)

I. B. Olenych, S. A. Sveleba, I. M. Kunyo, Yu. I. Olenych, and A. P. Luchechko
«Photoluminescence and Electret Properties of Porous Silicon/\([N(CH_3)_4]MeCl_4(Me=Zn, Cu)\) Hybrid Structures»
701–711 (2018)

PACS numbers: 68.37.Hk, 77.22.Ej, 77.55.fp, 78.55.Hx, 78.55.Mb, 78.67.Rb, 81.07.-b

Optically transparent crystalline arrays of \([N(CH_3)_4]MeCl_4(Me=Zn, Cu)\) are grown on the surface of porous silicon by means of the slow evaporation method. As revealed using the scanning electron microscopy, obtained crystals form arrays on the porous-layer surface and are partially embedded in the pores. Photoluminescence excitation and emission spectra of the hybrid structures are investigated in the 220–400 and 400–800 nm regions, respectively. As established, the multicolour photoemission is produced by combining the luminescent radiation bands of both porous silicon nanostructures and \([N(CH_3)_4]MeCl_4(Me=Zn, Cu)\) crystals. The possibility of the luminescence-properties’ controlling of the obtained nanosystems by changing the excitation energy is demonstrated. Electret properties of porous silicon/\([N(CH_3)_4]MeCl_4(Me=Zn, Cu)\) structures are studied by thermally stimulated depolarization method. Based on the temperature dependences of depolarization current, the activation energy of processes of the polarization charge relaxation in the experimental samples is found. Obtained results widen the perspective of using hybrid structures based on the porous silicon and \([N(CH_3)_4]MeCl_4(Me=Zn, Cu)\) crystals in electronics as components of the information processing and storage systems.

Keywords: porous silicon, hybrid structure, photoluminescence, electret, thermally stimulated depolarization

https://doi.org/10.15407/nnn.16.04.701

References
1. H. F ll, M. Christophersen, J. Carstensen, and G. Hasse, Mater. Sci. Eng. R, 39: 93 (2002). https://doi.org/10.1016/S0927-796X(02)00090-6
2. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys., 82: 909 (1997). https://doi.org/10.1063/1.366536
3. O. Bisi, S. Ossicini, and L. Pavesi, Surf. Sci. Rep., 38: 1 (2000). https://doi.org/10.1016/S0167-5729(99)00012-6
4. B. C. Chakravarty, J. Tripathi, A. K. Sharma, R. Kumar, K. N. Sood, S. B. Samanta, and S. N. Singh, Sol. Energ. Mat. Sol. C, 91: 659 (2007). https://doi.org/10.1016/j.solmat.2006.12.015
5. I. B. Olenych, Ukr. J. Phys. Opt., 12: 54 (2011). https://doi.org/10.3116/16091833/12/2/54/2011
6. J. Kim, S. S. Joo, K. W. Lee, J. H. Kim, D. H. Shin, S. Kim, and S. H. Choi, ACS Appl. Mater. Interfaces, 6: 20880 (2014). https://doi.org/10.1021/am5053812
7. H. G. Shiraz, F. R. Astaraei, S. Fardindoost, and Z. S. Hosseini, RSC Adv., 6: 44410 (2016). https://doi.org/10.1039/C6RA03541H
8. D. Yan, S. Li, S. Liu, M. Tan, D. Li, and Y. Zhu, J. Solid State Electr., 20: 459 (2016). https://doi.org/10.1007/s10008-015-3058-6
9. L. Martinez, O. Ocampo, Y. Kumar, and V. Agarwal, Nanoscale Res. Lett., 9: 437 (2014). https://doi.org/10.1186/1556-276X-9-437
10. A. A. Ensafi, M. M. Abarghoui, and B. Rezaei, Sensor. Actuat. B Chem., 204: 528 (2014). https://doi.org/10.1016/j.snb.2014.08.009
11. E. F. Venger, S. I. Kirillova, I. M. Kizyak, . G. Manoilov, and V. E. Primachenko, Semiconductors, 38: 113 (2004). https://doi.org/10.1134/1.1641142
12. I. B. Olenych, L. S. Monastyrskii, S. A. Sveleba, A. P. Luchechko, and L. I. Yarytska, J. Nano- Electron. Phys., 10: 01015 (2018).
13. X. Liu, Y. Liu, W. Chen, J. Li, and L. Liao, Nanoscale Res. Lett., 7: 285 (2012). https://doi.org/10.1186/1556-276X-7-285
14. A. L. Pirozerski and E. V. Charnaya, Fizika Tverdogo Tela, 52: 572 (2010).
15. S. A. Sveleba, I. V. Karpa, I. N. Katerynchuk, Yu. M. Furgala, O. V. Semotyuk, I. M. Kunyo, E. I. Fitsych, and Yu. I. Pankivskyi, Crystallogr. Rep., 58: 122 (2013). https://doi.org/10.1134/S1063774513010124
16. I. Karbovnyk, Ferroelectrics, 317: 15 (2005). https://doi.org/10.1080/00150190590963354
17. Yu. A. Gorokhovatskiy and G. A. Bordovsky, Thermoactivated Current Spectroscopy of High-Resistance Semiconductors and Dielectrics (Moscow: Nauka: 1991) (in Russian).
18. A. R. Mahjoub, M. Movahedi, E. Kowsari, and I. Yavari, Mat. Sci. Semicon. Proc., 22: 1 (2014). https://doi.org/10.1016/j.mssp.2014.01.024
19. A. Artesani, F. Gherardi, A. Nevin, G. Valentini, and D. Comelli, Materials, 10: 340 (2017). https://doi.org/10.3390/ma10040340
20. A. A. Bol, J. Ferwerda, J. A. Bergwerff, and A. Meijerink, J. Lumin., 99: 325 (2002). https://doi.org/10.1016/S0022-2313(02)00350-2
21. I. Olenych, B. Tsizh, L. Monastyrskii, O. Aksimentyeva, and B. Sokolovskii, Solid State Phenom., 230: 127 (2015). https://doi.org/10.4028/www.scientific.net/SSP.230.127
22. H. Z. Cummins, Phys. Rep., 185: 211 (1990). https://doi.org/10.1016/0370-1573(90)90058-A
23. D. G. Sannikov and V. A. Golovko, Izv. AN USSR Ser. Fis., 53: 1251 (1989) (in Russian).
24. I. V. Karpa, S. A. Sveleba, I. N. Katerynchuk, I. M. Kunyo, E. I. Fitsych, Electronics and Information Technologies, 5: 50 (2015) (in Ukrainian).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement