Issues

 / 

2018

 / 

vol. 16 / 

Issue 1

 



Download the full version of the article (in PDF format)

I. B. Olenych
«Transport and Relaxation of a Charge in Si–SiO\(_2\) Nanosystems»
191–200 (2018)

PACS numbers: 68.37.Hk, 73.21.La, 73.63.Kv, 78.20.Ci, 78.67.-n, 81.07.Ta, 81.40.Rs

In this work, silicon nanocrystals within the SiO\(_2\) shell are obtained by means of the sedimentation and thermal oxidation of fine-dispersed silicon particles. Effect of the thermal oxidation of silicon-nanocrystals’ system on the optical transmission spectra in the 12000–48000 1/cm range is investigated. An increase in the optical transmittance coefficient in the 12000–15000 1/cm range is registered and related to the short-wave displacement of fundamental absorption edge due to decrease in the silicon-nanocrystals’ sizes. Based on complex investigations by means of impedance spectroscopy and thermally stimulated depolarization method, processes of transfer and relaxation of nonequilibrium charge carriers are studied. Impedance model of Si–SiO\(_2\) nanosystem is constructed, and its electrical parameters are determined. Localized electron states are revealed and have influence on the electron transport properties of Si–SiO\(_2\) nanosystem. The calculated energy distribution of filling density of states has maxima in the energy ranges of 0.2–0.3, 0.35–0.45 and 0.55–0.65 eV.

Keywords: silicon nanocrystals, thermal oxidation, electrical conductivity, impedance, thermally stimulated depolarization, charge traps

https://doi.org/10.15407/nnn.16.01.191

References
1. S. K. Ray, S. Maikap, W. Banerjee, and S. Das, J. Phys. D: Appl. Phys., 46: 153001 (2013). https://doi.org/10.1088/0022-3727/46/15/153001
2. M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, and L. Vanzetti, Physica E, 41: 912 (2009). https://doi.org/10.1016/j.physe.2008.08.009
3. K. Q. Peng and S. T. Lee, Advanced Materials, 23: 198 (2001). https://doi.org/10.1002/adma.201002410
4. L. S. Monastyrskii, O. I. Aksimentyeva, I. B. Olenych, and B. S. Sokolovskii, Mol. Cryst. Liq. Cryst., 589: 124 (2014). https://doi.org/10.1080/15421406.2013.872400
5. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franz, and F. Priolo, Nature, 408: 440 (2000). https://doi.org/10.1038/35044012
6. N. Daldosso and L. Pavesi, Laser Photonics Rev., 3: 508 (2009). https://doi.org/10.1002/lpor.200810045
7. A. Dutta, S. Oda, Y. Fu, and M. Willander, Jpn. J. Appl. Phys., 39: 4647 (2000). https://doi.org/10.1143/JJAP.39.4647
8. K. Yano, T. Ishii, T. Hashimoto, T. Kobayashi, F. Murai, and K. Seki, IEEE Trans. Electron. Dev., 41: 1628 (1994). https://doi.org/10.1109/16.310117
9. T. Shimizu-Iwayama, D. E. Hole, and I. W. Boyd, J. Phys.: Condens. Mater, 11: L601 (1999). https://doi.org/10.1088/0953-8984/11/34/312
10. X. Wu, A.M. Bittner, K. Kern, Ch. Eggs, and S. Veprek, Appl. Phys. Lett., 77: 645 (2000). https://doi.org/10.1063/1.127072
11. B. Garrido Fernandez, M. Lopez, C. Garcia, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, J. Appl. Phys., 91: 798 (2002). https://doi.org/10.1063/1.1423768
12. I. Olenych, B. Tsizh, L. Monastyrskii, O. Aksimentyeva, and B. Sokolovskii, Solid State Phenom., 230: 127 (2015). https://doi.org/10.4028/www.scientific.net/SSP.230.127
13. L. M. Sorokin, L. V. Grigor'ev, A. E. Kalmykov, and V. I. Sokolov, Phys. Solid State, 47: 1365 (2005).
14. I. B. Olenych, J. Nano- Electron. Phys., 5: 04072 (2013) (in Ukrainian).
15. T.-H. Tsai, Separation and Purification Technology, 78: 16 (2011). https://doi.org/10.1016/j.seppur.2011.01.011
16. V. Lehman and V. Gosele, Appl. Phys. Lett., 58: 856 (1990). https://doi.org/10.1063/1.104512
17. O. Bisi, S. Ossicini, and L. Pavesi, Surf. Sci. Rep., 38: 1 (2000). https://doi.org/10.1016/S0167-5729(99)00012-6
18. A. Yu. Karlach, G. V. Kuznetsov, S. V. Litvinenko, Yu. S. Milovanov, and V. A. Skryshevsky, Semiconductors, 44: 1342 (2010). https://doi.org/10.1134/S1063782610100179
19. I. Karbovnyk, I. Borshchyshyn, Y. Vakhula, I. Lutsyshyn, H. Klym, and I. Bolesta, Ceramics International, 42: 8501 (2016). https://doi.org/10.1016/j.ceramint.2016.02.075
20. Y. Gorokhovatsky and H. Bordovsky, Thermally Activated Current Spectroscopy of High-Resistance Semiconductors and Dielectrics (Moscow: Nauka: 1991) (in Russian).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement