Issues

 / 

2018

 / 

vol. 16 / 

Issue 1

 



Download the full version of the article (in PDF format)

O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, I. I. Medvid, Zh. Ya. Tsapovska, and D. S. Leonov
«Photoelectric Properties of Thin \(\beta-Ga_2O_3\) Films»
167–174 (2018)

PACS numbers: 68.37.Ps, 68.55.J-, 73.50.Pz, 78.55.Hx, 78.56.-a, 78.60.-b, 81.15.-z

The structure, phase composition, and surface morphology of thin \(\beta-Ga_2O_3\) films obtained by high-frequency ion-plasma sputtering are investigated. The presence of intrinsic photoconductivity and its features are revealed depending on the conditions for obtaining films. The analysis of the spectral shift of the maximum of the photoconductivity excitation band as a function of the thermal treatment of films is provided.

Keywords: gallium oxide, thin films, crystallite, photoconductivity

https://doi.org/10.15407/nnn.16.01.167

References
1. J.-G. Zhao, Z.-X. Zhang, Z.-W. Ma, H.-G. Duan, X.-S. Guo, and E.-Q. Xie, Chinese Phys. Lett., 25, No. 10: 3787 (2008).
2. K. Shimamura, E. G. V llora, T. Ujiie, and K. Aoki, Appl. Phys. Lett., 92, No. 20: 201914 (2008). https://doi.org/10.1063/1.2910768
3. P. Wellenius, A. Suresh, J. V. Foreman, H. O. Everitt, and J. F. Muth, Mater. Sci. Eng. B, 146, Nos. 1-3: 252 (2008). https://doi.org/10.1016/j.mseb.2007.07.060
4. T. Miyata, T. Nakatani, and T. Minami, Thin Sol. Films, 373: 145 (2000). https://doi.org/10.1016/S0040-6090(00)01123-8
5. Z. Ji, J. Du, J. Fan, and W. Wang, Opt. Materials, 28, No. 4: 415 (2006). https://doi.org/10.1016/j.optmat.2005.03.006
6. Y. Nakano and T. Jimbo, Appl. Phys. Lett., 82, No. 2: 218 (2003). https://doi.org/10.1063/1.1536029
7. S.-A. Lee, S.-Y. Jeong, J.-Y. Hwang, J.-P. Kim, M.-G. Ha, and C.-R. Cho, Integr. Ferroelectr., 74, No. 1: 173 (2005). https://doi.org/10.1080/10584580500414192
8. V. M. Kalygina, A. N. Zarubin, V. A. Novikov, Yu. S. Petrova, O. P. Tolbanov, A. V. Tyazhev, S. Yu. Tsupiy, and T. M. Yaskevich, Fiz. Tekhn. Poluprovodnikov, 47, No. 5: 598 (2013) (in Russian). https://doi.org/10.1134/S1063782613050126
9. Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, Appl. Phys. Lett., 90, No. 3: 031912 (2007). https://doi.org/10.1063/1.2432946
10. J. Hao and M. Cocivera, J. Phys. D: Appl. Phys., 35, No. 5: 433 (2002). https://doi.org/10.1088/0022-3727/35/5/304
11. Y. Wei, Y. Jinliang, W. Jiangyan, Z. Liying, J. Semicond., 33, No. 7: 073003 (2012). https://doi.org/10.1088/1674-4926/33/7/073003
12. E. V. Berlin and L. A. Seidman, Ionno-Plazmennyye Protsessy v Tonkoplenochnoy Tekhnologii (Moscow: Tekhnosfera: 2010) (in Russian).
13. O. M. Bordun, I. Yo. Kukharskyy, B. O. Bordun, and V. B. Lushchanets, J. Appl. Spectrosc., 81, No. 5: 771 (2014). https://doi.org/10.1007/s10812-014-0004-9
14. S. J. Pearton, J. Yang, P. H. Cary IV, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Appl. Phys. Rev., 5, No. 1: 011301 (2018). https://doi.org/10.1063/1.5006941
15. I. B. Vendik, A. N. Ermolenko, V. V. Esipov, B. M. Pchelkin, and M. F. Sitnikova, Zhurn. Tekhn. Fiz., 58, No. 12: 2323 (1988) (in Russian).
16. W. Sinkler, L. D. Marks, D. D. Edwards, T. O. Mason, K. R. Poeppelmeier, Z. Hu, and J. D. Jorgensen, J. Solid State Chem., 136, No. 1: 145 (1998). https://doi.org/10.1006/jssc.1998.7804
17. V. I. Vasyltsiv, Ya. I. Rym, and Ya. M. Zakharko, phys. status solidi (b), 195, No. 2: 653 (1996). https://doi.org/10.1002/pssb.2221950232
18. V. V. Tokiy, V. I. Timchenko, and V. A. Soroka, Fiz. Tverd. Tela, 45, No. 4: 600 (2003) (in Russian). https://doi.org/10.1134/1.1568996
19. T. V. Blank and Yu. A. Gol'dberg, Fiz. Tekhn. Poluprovodnikov, 41, No. 11: 1281 (2007) (in Russian).
20. O. M. Bordun, V. G. Bihday, and I. Yo. Kukharskyy, J. Appl. Spectrosc., 80, No. 5: 721 (2013). https://doi.org/10.1007/s10812-013-9832-2
21. O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, and I. I. Medvid, J. Appl. Spectrosc, 84, No. 1: 46 (2017). https://doi.org/10.1007/s10812-017-0425-3
22. S. K. Sampath and J. F. Cordaro, J. Am. Ceram. Soc., 81, No. 3: 649 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02385.x
23. F. Litimein, D. Rached, R. Khenata, and H. Baltache, J. Alloys Comp., 488, No. 1: 148 (2009). https://doi.org/10.1016/j.jallcom.2009.08.092
24. M. Michling and D. Schmei er, IOP Conf. Ser.: Mater. Sci. Eng., 34: 012002 (2012). https://doi.org/10.1088/1757-899X/34/1/012002
25. H. H. Tippins, Phys. Rev., 140, No. 1A: A316 (1965). https://doi.org/10.1103/PhysRev.140.A316
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement