Перейти на головну сторінку журналу

Випуски

 / 

2025

 / 

том 23 / 

випуск 2

 



Завантажити повну версію статті (в PDF форматі)

E. I. GET’MAN and S. V. RADIO

Vasyl’ Stus Donetsk National University, 21, 600-Richchia Str., UA-21027 Vinnytsia, Ukraine

Isomorphous Substitutions of Calcium with Rare-Earth Elements and Lithium in Scheelite-Structured Molybdates for Actinoid Simulation

407–422 (2025)

PACS numbers: 64.75.Nx, 65.40.Ba, 65.40.gd, 81.30.Dz, 81.30.Mh, 82.33.Pt, 82.60.Lf

З використанням кристалоенергетичної теорії ізоморфної змішуваности В. С. Урусова розраховано енергії змішання, критичні температури розпаду, межі ізоморфних заміщень, а також визначено області термодинамічної стабільности твердих розчинів Ca1-x(Li0,5Ln0,5)xMoO4, де Ln — рідкісноземельні елементи (РЗЕ). Показано, що критичні температури розпаду зі збільшенням номера РЗЕ в ряду La–Sm симбатно з енергією змішання зменшуються в інтервалі температур 162–16 К, а в ряду Eu–Lu зростають в інтервалі температур 30–294 К. Представлено діяграму термодинамічної стабільности, а також бані розпаду твердих розчинів у діяпазоні концентрацій від х = 0 до х = 1,0 через х = 0,05. Вони дають змогу визначати рівноважні межі заміщень за температурою, або температуру за заданою межею заміщення, чи то області термодинамічної стабільности твердих розчинів. Результати роботи можуть бути корисними для зберігання та захоронення актиноїдів, радіоактивних ізотопів РЗЕ та Молібдену в області наднизьких температур.

КЛЮЧОВІ СЛОВА: твердий розчин, енергія змішання, молібдати, лантаноїди, актиноїди, Кальцій, Літій, структура шеєліту, ізоморфні заміщення, термодинамічна стабільність


REFERENCES
  1. A. I. Orlova and M. I. Ojovan, Materials, 12: 2638 (2019); https://doi.org/10.3390/ma12162638
  2. A. A. Nikitina, Z. A. Mikhaylovskaya, N. S. Knyazev, A. I. Malkin, and A. N. Korotkov, Fizika. Tekhnologii. Innovatsii: Sbornik Statey VII Mezhdunarodnoy Molodezhnoy Nauchnoy Konferentsii (Yekaterinburg: UrFU: 2020) (in Russian); http://elar.urfu.ru/handle/10995/91850
  3. I. C. Nogueira, L. S. Cavalcante, P. F. S. Pereira, M. M. de Jesus, J. M. Rivas Mercury, N. C. Batista, M. Siu Li, and E. Longo, J. Appl. Cryst., 46, No. 5: 1434 (2013); https://doi.org/10.1107/S0021889813020335
  4. A. Priya, E. Sinha, and S. K. Rout, Solid State Sci., 20: 40 (2013); https://doi.org/10.1016/j.solidstatesciences.2013.03.002
  5. B. Bakiz, A. Hallaoui, A. Taoufyq, A. Benlhachemi, F. Guinneton, S. Villain, M. Ezahri, J.-C. Valmalette, M. Arab, and J.-R. Gavarri, J. Solid State Chem., 258: 146 (2018); https://doi.org/10.1016/j.jssc.2017.10.014
  6. T. Anitha, A. E. Reddy, Y. A. Kumar, Y.-R. Cho, and H.-J. Kim, Dalton Trans., 48, No. 28: 10652 (2019); https://doi.org/10.1039/C9DT01931F
  7. O. A. Buryi, D. M. Vynnyk, T. I. Voroniak, I. V. Stasyshyn, A. T. Ratych, and A. S. Andrushchak, Ukrainian Journal of Physics, 68, No. 2: 92 (2023); https://doi.org/10.15407/ujpe68.2.92
  8. Ch. Meng, W. Li, Ch. Ren, and J. Zhao, J. Mater. Sci., 55: 2741 (2020); https://doi.org/10.1007/s10853-019-04223-y
  9. M. G. Tokarev, E. A. Potanina, A. I. Orlova, S. A. Khainakov, M. S. Boldin, E. A. Lantsev, N. V. Sakharov, A. A. Murashov, S. Garcia-Granda, A. V. Nokhrin, and V. N. Chuvil’deev, Inorg. Mater., 55, No. 7: 730 (2019); https://doi.org/10.1134/S0020168519070203
  10. A. I. Orlova, Ye. A. Potanina, M. G. Tokarev, M. S. Boldin, and Ye. A. Lantsev, Voprosy Radiatsionnoy Bezopasnosti, 2, No. 86: 2 (2017) (in Russian).
  11. E. A. Potanina, A. I. Orlova, D. A. Mikhailov, A. V. Nokhrin, V. N. Chuvil’deev, M. S. Boldin, N. V. Sakharov, Е. А. Lantcev, M. G. Tokarev, and A. A. Murashov, J. Alloy Compd., 774: 182 (2019); https://doi.org/10.1016/j.jallcom.2018.09.348
  12. E. A. Potanina, A. I. Orlova, A. V. Nokhrin, M. S. Boldin, N. V. Sakharov, O. A. Belkin, V. N. Chuvil’deev, M. G. Tokarev, S. V. Shotin, and A. Yu. Zelenov, Ceram. Int., 44, No. 4: 4033 (2018); https://doi.org/10.1016/j.ceramint.2017.11.199
  13. A. A. Belov, O. O. Shichalin, E. K. Papynov, I. Y. Buravlev, A. S. Portnyagin, S. A. Azon, A. N. Fedorets, A. A. Vornovskikh, E. S. Kolodeznikov, E. A. Gridasova, A. Pogodaev, N. B. Kondrikov, Y. Shi, and I. G. Tananaev, Materials, 16, No. 17: 5838 (2023); https://doi.org/10.3390/ma16175838
  14. A. E. Grechanovsky, N. N. Eremin, and V. S. Urusov, Phys. Solid State, 55, No. 9: 1929 (2013); https://doi.org/10.1134/S1063783413090138
  15. D. Bosbach, T. Rabung, F. Brandt, and T. Fanghänel, Radiochim. Acta, 92, Nos. 9–11: 639 (2004); https://doi.org/10.1524/ract.92.9.639.54976
  16. I. S. Skiter and Ye. Ye. Vtornikova, Yaderna ta Radiatsiyna Bezpeka [Nuclear and Radiation Safety], 2, No. 78: 36 (2018) (in Ukrainian); https://doi.org/10.32918/nrs.2018.2(78).06
  17. L. A. Boatner, Rev. Mineral. Geochem., 48, No. 1: 87 (2002); https://doi.org/10.2138/rmg.2002.48.4
  18. V. S. Urusov, Teoriia Izomorfnoi Smesimosti [The Theory of Isomorphous Miscibility] (Мoskva: Nauka: 1977) (in Russian).
  19. D. Spassky, A. Vasil’ev, V. Nagirnyi, I. Kudryavtseva, D. Deyneko, I. Nikiforov, I. Kondratyev, and B. Zadneprovski, Materials, 15, No. 19: 6844 (2022); https://doi.org/10.3390/ma15196844
  20. V. S. Voznyak-Levushkina, A. A. Arapova, D. A. Spassky, I. V. Nikiforov, and B. I. Zadneprovski, Phys. Solid State, 64, No. 11: 567 (2022); https://doi.org/10.1134/S1063783422110130
  21. E. I. Get’man, S. V. Radio, and L. I. Ardanova, Inorg. Mater., 54, No. 6: 596 (2018); https://doi.org/10.1134/S0020168518060031
  22. D. H. Templeton, J. Chem. Phys., 21, No. 11: 2097 (1953); https://doi.org/10.1063/1.1698788
  23. K. Li and D. Xue, J. Phys. Chem. A, 110, No. 39: 11332 (2006); https://doi.org/10.1021/jp062886k
  24. S. S. Batsanov, Russ. Chem. Rev., 37, No. 5: 332 (1968); https://doi.org/10.1070/RC1968v037n05ABEH001639
  25. A. A. Yevdokimov, V. A. Yefremov, V. K. Trunov, I. A. Kleyman, and B. F. Dzhurinskiy, Soyedineniya Redkozemel’nykh Ehlementov. Molibdaty, Vol’framaty [Compounds of Rare-Earth Elements. Molybdates, Tungstates] (Moskva: Nauka: 1991) (in Russian).
  26. S. S. Batsanov, Strukturnaya Khimiya. Fakty i Zavisimosti [Structural Chemistry. Facts and Dependences] (Мoskva: Dialog-MGU: 2000) (in Russian).
  27. R. Becker, Z. Metallkd., 29: 245 (1937).
  28. R. D. Shannon, Acta Crystallogr., Sect. A, 32, No. 5: 751 (1976); https://doi.org/10.1107/S0567739476001551
  29. L. Pauling, General Chemistry (San-Francisco: W. H. Freeman and Co.: 1970).
  30. E. Gürmen, E. Daniels, and J. S. King, J. Chem. Phys., 55, No. 3: 1093 (1971); https://doi.org/10.1063/1.1676191
  31. E. I. Get’man, Izomorfnyye Zameshcheniya v Vol’framatnykh i Molibdatnykh Sistemakh [Isomorphous Substitutions in Tungstate and Molybdate Systems] (Novosibirsk: Nauka: 1985) (in Russian).
  32. E. I. Get’man, S. V. Radio, L. B. Ignatova, and L. I. Ardanova, Russ. J. Inorg. Chem., 64, No. 1: 118 (2019); https://doi.org/10.1134/S0036023619010091
  33. H.-H. Xi, D. Zhou, H.-D. Xie, B. He, and Q.-P. Wang, J. Am. Ceram. Soc., 98, No. 2: 587 (2015); https://doi.org/10.1111/jace.13332
  34. J. Wang, X. Jing, Ch. Yan, and J. Li, J. Electrochem. Soc., 152, No. 3: G186 (2005); https://doi.org/10.1149/1.1856924
  35. Q. Zhang and Zh. Xia, RSC Adv., 4, No. 95: 53237 (2014); https://doi.org/10.1039/C4RA09136A
  36. X. Wang, Y. He, G. Peng, Zh. Liang, and J. Wu, Chinese Journal of Materials Research, 26, No. 6: 615 (2012); https://www.cjmr.org/EN/Y2012/V26/I6/615
  37. X. Liu, L. Li, H. M. Noh, J. H. Jeong, K. Jang, and D. S. Shin, RSC Adv., 5, No. 13: 9441 (2015); https://doi.org/10.1039/C4RA12183J
  38. A. R. Kotelnikov, G. M. Akhmedzhanova, N. I. Suk, K. V. Martynov, O. T. Gavlina, and V. A. Suvorova, Geochem. Int., 57, No. 10: 1066 (2019); https://doi.org/10.1134/S0016702919100057
  39. O. E. Shubabko, G. Ye. Ovsyannikova, Min Kheyn Tkhet, and M. A. Vartanyan, Uspekhi v Khimii i Khimicheskoy Tekhnologii, 32, No. 2: 188 (2017) (in Russian).
  40. J. S. McCloy and A. Goel, MRS Bulletin, 42: 233 (2017); https://doi.org/10.1557/mrs.2017.8
  41. A. V. Degtyarev, Kosmichna Nauka i Tekhnologiya, 20, No. 1: 58 (2014); https://www.mao.kiev.ua/biblio/jscans/knit/2014-20/knit-2014-20-1-07-degtyarev.pdf
  42. E. I. Get’man and S. V. Radio, Inorg. Mater., 53, No. 7: 718 (2017); https://doi.org/10.1134/S0020168517070044
  43. Y. A. Oleksii, E. I. Get’man, S. V. Radio, L. I. Ardanova, and E. E. Zubov, 2021 IEEE 11th International Conference ‘Nanomaterials: Applications & Properties’ (NAP) (Odesa, Ukraine, 2021), p. 1–5; https://doi.org/10.1109/NAP51885.2021.9568596
  44. E. I. Get’man, Y. A. Oleksii, O. V. Kudryk, S. V. Radio, and L. I. Ardanova, Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications. Springer Proceedings in Physics (Eds. O. Fesenko and L. Yatsenko) (Cham: Springer: 2021), vol. 263, p. 3; https://doi.org/10.1007/978-3-030-74741-1_1
Creative Commons License
Ця стаття ліцензована за Creative Commons Attribution-NoDerivatives 4.0 International License
©2003 НАНОСИСТЕМИ, НАНОМАТЕРІАЛИ, НАНОТЕХНОЛОГІЇ Інститут металофізики ім. Г. В. Курдюмова НАН України.

E-mail: tatar@imp.kiev.ua Телефони та адреса редакції Про збірник Угода користувача