Выпуски

 / 

2020

 / 

том 18 / 

выпуск 1

 



Скачать полную версию статьи (в PDF формате)

S. O. Zelinskyi, N. G. Stryzhakova, Yu. A. Maletin
«Graphene vs Activated Carbon in Supercapacitors»
0001–0014 (2020)

PACS numbers: 61.48.Gh, 73.30.+y, 81.05.U-, 81.05.ue, 82.47.Uv, 84.32.Tt

Четыре типа материалов на основе графена и четыре на основе активированных углей, полученных от различных производителей, а также специальная сажа компании Cabot и композиции на основе всех этих материалов испытаны в качестве электродов конденсаторов двойного электрического слоя (EDLC). Найдено, что удельная электростатическая ёмкость и поддержание ёмкости с увеличением тока при использовании графеновых электродов проигрывают значениям, которые можно достичь при использовании лучших образцов активированных углей, специально разработанных для применений в EDLC. Получена достаточно хорошая корреляция между удельной поверхностью электродных материалов и их электростатической ёмкостью, что даёт для графенов, графенсодержащих материалов и активированных углей, которые были изучены в данной работе, величину ёмкости двойного электрического слоя порядка 0,052 Ф/м2.

Keywords: supercapacitor (ionistor), graphene materials, activated carbon, energy storage


References
1. K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature, 490: 192 (2012); https://doi.org/10.1038/nature11458.
2. E. P. Randviir, D. A.C. Brownson, and C. E. Banks, Materials Today, 17: 426 (2014); https://doi.org/10.1016/j.mattod.2014.06.001.
3. X. Zang, Graphene: Fabrication, Characterizations, Properties and Applications (Eds. Hongwei Zhu et al.). Ch. 7. Graphene-Based Flexible Energy Storage Devices (London–Chennai: Academic Press: 2018), p. 175; https://doi.org/10.1016/B978-0-12-812651-6.00007-0.
4. Y. Dong, Z. Wu, W. Ren, H.-M. Cheng, and X. Bao, Science Bulletin, 30: 724 (2017); https://doi.org/10.1016/j.scib.2017.04.010.
5. Y. Yang, C. Han, B. Jiang, J. Iocozzia, C. He, D. Shi, T. Jiang, and Z. Lin, Materials Science and Engineering: R: Reports, 102: 1 (2016); https://doi.org/10.1016/j.mser.2015.12.003.
6. M. Lu, F. Beguin, and E. Frackowiak, New Materials for Sustainable Energy and Development. Supercapacitors: Materials, Systems, and Applications (Wiley-VCH: 2013).
7. J. M. Miller, Ultracapacitor Applications, Institution of Engineering and Technology (Stevanage: 2011).
8. B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer: 2013).
9. O. N. Kalugin, V. V. Chaban, V. V. Loskutov, and O. V. Prezhdo, Nano Lett., 8: 2126 (2008); https://doi.org/10.1021/nl072976g.
10. Y. Maletin, V. Strelko, N.Stryzhakova, S. Zelinskyi, A. B. Rozhenko, D. Gromadsky, V. Volkov, S. Tychina, O. Gozhenko, and D. Drobny, Ener. & Env. Res., 3: 156 (2013); https://doi.org/10.5539/eer.v3n2p156.
11. A. Peigney, A. Laurent, Ch. E. Flahaut, R. R. Bacsa, and A. Rousset, Carbon, 39: 507 (2001); https://doi.org/10.1016/S0008-6223(00)00155-X.
12. R. Raccichin, A. Varzi, S. Passerini, and B. Scrosati, Natural Materials, 22: 271 (2014); https://doi.org/10.1038/nmat4170.
13. Q. Ke and J. Wang, J. Materiomics, 2: 37 (2016); https://doi.org/10.1016/j.jmat.2016.01.001.
14. J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Science, 270: 590 (1995); https://doi.org/10.1126/science.270.5236.590.
15. O. Vargas, A. Caballero, and J. Morales, Electrochim. Acta, 130: 551 (2014); https://doi.org/10.1016/j.electacta.2014.03.037.
16. Y.-X. Wang, S.-L. Chou, H.-K. Liu, and S.-X. Dou, Carbon, 57: 202 (2013); https://doi.org/10.1016/j.carbon.2013.01.064.
17. A. Garcia-Gomez, G. Moreno-Fernandez, B. Lobato, and T. A. Centeno, Phys. Chem. Chem. Phys., 17: 15687 (2015); https://doi.org/10.1039/C5CP01904D.
18. T. A. Centeno, O. Sereda, and F. Stoeckli, Phys. Chem. Chem. Phys., 13: 12403 (2011); https://doi.org/10.1039/C1CP20748B.
19. International Standard IEC 62391-2. Fixed Electric Double-Layer Capacitors for Use in Electronic Equipment (2006).
20. Y. A. Maletin, S. M. Podmogilny, N. G. Stryzhakova, A. A. Mironova, V. V. Danylin, and A. Y. Meletin, Electrochemical Double Layer Capacitor, United States Patent US20080151472A1 (2007).
21. B. Lobato, L. Suarez, L. Guardia, and T. A. Centeno, Carbon, 122: 434 (2017); https://doi.org/10.1016/j.carbon.2017.06.083.
22. T. A. Centeno and F. Stoeckli, Carbon, 48: 2478 (2010); https://doi.org/10.1016/j.carbon.2010.03.020.
23. N. Jacke, M. Rodner, A. Schreiber, J. Jeongwook, M. Zeiger, M. Aslan, D. Weingarth, and V. Presser, J. Power Sources, 326: 660 (2016); https://doi.org/10.1016/j.jpowsour.2016.03.015.
24. F. Stoeckli and T. A. Centeno, J. Mater. Chem. A, 1: 6865 (2013); https://doi.org/10.1039/C3TA10906B.
25. J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. M. Reddy, J. Yu, R. Vajtai, and P. M. Ajayan, Nano Lett., 11: 1423 (2011); https://doi.org/10.1021/nl200225j.
26. N. Jackel, P. Simon, Y. Gogotsi, and V. Presser, ACS Energy Lett., 1: 1262 (2016); https://doi.org/10.1021/acsenergylett.6b00516.
27. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P. L. Taberna, Science, 313: 1760 (2006); https://doi.org/10.1126/science.1132195.
28. M. Nakamura, N. Sato, N. Hoshi, and O. Sakata, Chem. Phys. Chem., 12: 1430 (2011); https://doi.org/10.1002/cphc.201100011.
29. J.-P. Randin and E. Yeager, J. Elec. Chem. & Inter. Electrochem., 36: 257 (1972); https://doi.org/10.1016/S0022-0728(72)80249-3.
30. J.-P. Randin and E. Yeager, J. Elec. Chem. & Inter. Electrochem., 58: 313 (1975); https://doi.org/10.1016/S0022-0728(75)80089-1.
31. T. Kim, S. Lim, K. Kwon, S.-H. Hong, W. Qiao, C. K. Rhee, S.-H. Yoon, and I. Mochida, Langmuir, 22: 9086 (2006); https://doi.org/10.1021/la061380q.
32. D. Qu, J. Power Sources, 109: 403 (2002); https://doi.org/10.1016/S0378- 7753(02)00108-8.
33. Y. Maletin, N. Stryzhakova, S. Zelinskyi, S. Chernukhin, D. Tretyakov, and S. Tychina, Int. J. Sc. & Eng. Inv., 7: 146 (2018); http://www.ijsei.com/papers/ijsei-77918-24.pdf.
34. M. Hahn, M. Baertschi, O. Barbieri, J.-C. Sauter, R. Kotz, and R. Gallay, Electrochemical and Solid-State Lett., 7: A33 (2004); https://doi.org/10.1149/1.1635671.
35. Ji Chen, Chun Li, and Gaoquan Shi, J. Phys. Chem. Lett., 4: 1244 (2013); https://doi.org/10.1021/jz400160k.
36. Y. Huang, J. Liang, and Y. Chen, Small, 8: 1 (2012); https://doi.org/10.1002/smll.201102635.
Creative Commons License
Все статьи доступны по Лицензии Creative Commons “Attribution-NoDerivatives” («атрибуция — без производных статей») 4.0 Всемирная
©2003—2021 НАНОСИСТЕМЫ, НАНОМАТЕРИАЛЫ, НАНОТЕХНОЛОГИИ Институт металлофизики им. Г.В. Курдюмова Национальной Академии наук Украины.

Электронная почта: tatar@imp.kiev.ua Телефоны и адрес редакции О сборнике Пользовательское соглашение