Issues

 / 

2020

 / 

vol. 18 / 

Issue 1

 



Download the full version of the article (in PDF format)

S. O. Zelinskyi, N. G. Stryzhakova, Yu. A. Maletin
«Graphene vs Activated Carbon in Supercapacitors»
001–014 (2020)

PACS numbers: 61.48.Gh, 73.30.+y, 81.05.U-, 81.05.ue, 82.47.Uv, 84.32.Tt

Four graphene materials and four activated carbons from various producers as well as carbon black from Cabot company and compositions of all these materials are tested as electrodes of electrochemical double layer capacitors (EDLC). As revealed, the specific capacitance of graphene-based electrodes and capacitance retention with an increase in current are inferior to the values, which can be achieved with the best activated carbons specially developed for the EDLC application. Fairly good correlation between the surface area and the electrostatic capacitance of electrode materials is revealed resulting in the capacitance of electric double layer of graphene, graphene-containing and activated carbon materials tested in this work to be close to 0.052 F/m2.

Keywords: supercapacitor (ionistor), graphene materials, activated carbon, energy storage

https://doi.org/10.15407/nnn.18.01.001

References
1. K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature, 490: 192 (2012); https://doi.org/10.1038/nature11458.
2. E. P. Randviir, D. A.C. Brownson, and C. E. Banks, Materials Today, 17: 426 (2014); https://doi.org/10.1016/j.mattod.2014.06.001.
3. X. Zang, Graphene: Fabrication, Characterizations, Properties and Applications (Eds. Hongwei Zhu et al.). Ch. 7. Graphene-Based Flexible Energy Storage Devices (London–Chennai: Academic Press: 2018), p. 175; https://doi.org/10.1016/B978-0-12-812651-6.00007-0.
4. Y. Dong, Z. Wu, W. Ren, H.-M. Cheng, and X. Bao, Science Bulletin, 30: 724 (2017); https://doi.org/10.1016/j.scib.2017.04.010.
5. Y. Yang, C. Han, B. Jiang, J. Iocozzia, C. He, D. Shi, T. Jiang, and Z. Lin, Materials Science and Engineering: R: Reports, 102: 1 (2016); https://doi.org/10.1016/j.mser.2015.12.003.
6. M. Lu, F. Beguin, and E. Frackowiak, New Materials for Sustainable Energy and Development. Supercapacitors: Materials, Systems, and Applications (Wiley-VCH: 2013).
7. J. M. Miller, Ultracapacitor Applications, Institution of Engineering and Technology (Stevanage: 2011).
8. B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer: 2013).
9. O. N. Kalugin, V. V. Chaban, V. V. Loskutov, and O. V. Prezhdo, Nano Lett., 8: 2126 (2008); https://doi.org/10.1021/nl072976g.
10. Y. Maletin, V. Strelko, N.Stryzhakova, S. Zelinskyi, A. B. Rozhenko, D. Gromadsky, V. Volkov, S. Tychina, O. Gozhenko, and D. Drobny, Ener. & Env. Res., 3: 156 (2013); https://doi.org/10.5539/eer.v3n2p156.
11. A. Peigney, A. Laurent, Ch. E. Flahaut, R. R. Bacsa, and A. Rousset, Carbon, 39: 507 (2001); https://doi.org/10.1016/S0008-6223(00)00155-X.
12. R. Raccichin, A. Varzi, S. Passerini, and B. Scrosati, Natural Materials, 22: 271 (2014); https://doi.org/10.1038/nmat4170.
13. Q. Ke and J. Wang, J. Materiomics, 2: 37 (2016); https://doi.org/10.1016/j.jmat.2016.01.001.
14. J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Science, 270: 590 (1995); https://doi.org/10.1126/science.270.5236.590.
15. O. Vargas, A. Caballero, and J. Morales, Electrochim. Acta, 130: 551 (2014); https://doi.org/10.1016/j.electacta.2014.03.037.
16. Y.-X. Wang, S.-L. Chou, H.-K. Liu, and S.-X. Dou, Carbon, 57: 202 (2013); https://doi.org/10.1016/j.carbon.2013.01.064.
17. A. Garcia-Gomez, G. Moreno-Fernandez, B. Lobato, and T. A. Centeno, Phys. Chem. Chem. Phys., 17: 15687 (2015); https://doi.org/10.1039/C5CP01904D.
18. T. A. Centeno, O. Sereda, and F. Stoeckli, Phys. Chem. Chem. Phys., 13: 12403 (2011); https://doi.org/10.1039/C1CP20748B.
19. International Standard IEC 62391-2. Fixed Electric Double-Layer Capacitors for Use in Electronic Equipment (2006).
20. Y. A. Maletin, S. M. Podmogilny, N. G. Stryzhakova, A. A. Mironova, V. V. Danylin, and A. Y. Meletin, Electrochemical Double Layer Capacitor, United States Patent US20080151472A1 (2007).
21. B. Lobato, L. Suarez, L. Guardia, and T. A. Centeno, Carbon, 122: 434 (2017); https://doi.org/10.1016/j.carbon.2017.06.083.
22. T. A. Centeno and F. Stoeckli, Carbon, 48: 2478 (2010); https://doi.org/10.1016/j.carbon.2010.03.020.
23. N. Jacke, M. Rodner, A. Schreiber, J. Jeongwook, M. Zeiger, M. Aslan, D. Weingarth, and V. Presser, J. Power Sources, 326: 660 (2016); https://doi.org/10.1016/j.jpowsour.2016.03.015.
24. F. Stoeckli and T. A. Centeno, J. Mater. Chem. A, 1: 6865 (2013); https://doi.org/10.1039/C3TA10906B.
25. J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. M. Reddy, J. Yu, R. Vajtai, and P. M. Ajayan, Nano Lett., 11: 1423 (2011); https://doi.org/10.1021/nl200225j.
26. N. Jackel, P. Simon, Y. Gogotsi, and V. Presser, ACS Energy Lett., 1: 1262 (2016); https://doi.org/10.1021/acsenergylett.6b00516.
27. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P. L. Taberna, Science, 313: 1760 (2006); https://doi.org/10.1126/science.1132195.
28. M. Nakamura, N. Sato, N. Hoshi, and O. Sakata, Chem. Phys. Chem., 12: 1430 (2011); https://doi.org/10.1002/cphc.201100011.
29. J.-P. Randin and E. Yeager, J. Elec. Chem. & Inter. Electrochem., 36: 257 (1972); https://doi.org/10.1016/S0022-0728(72)80249-3.
30. J.-P. Randin and E. Yeager, J. Elec. Chem. & Inter. Electrochem., 58: 313 (1975); https://doi.org/10.1016/S0022-0728(75)80089-1.
31. T. Kim, S. Lim, K. Kwon, S.-H. Hong, W. Qiao, C. K. Rhee, S.-H. Yoon, and I. Mochida, Langmuir, 22: 9086 (2006); https://doi.org/10.1021/la061380q.
32. D. Qu, J. Power Sources, 109: 403 (2002); https://doi.org/10.1016/S0378- 7753(02)00108-8.
33. Y. Maletin, N. Stryzhakova, S. Zelinskyi, S. Chernukhin, D. Tretyakov, and S. Tychina, Int. J. Sc. & Eng. Inv., 7: 146 (2018); http://www.ijsei.com/papers/ijsei-77918-24.pdf.
34. M. Hahn, M. Baertschi, O. Barbieri, J.-C. Sauter, R. Kotz, and R. Gallay, Electrochemical and Solid-State Lett., 7: A33 (2004); https://doi.org/10.1149/1.1635671.
35. Ji Chen, Chun Li, and Gaoquan Shi, J. Phys. Chem. Lett., 4: 1244 (2013); https://doi.org/10.1021/jz400160k.
36. Y. Huang, J. Liang, and Y. Chen, Small, 8: 1 (2012); https://doi.org/10.1002/smll.201102635.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement