Выпуски

 / 

2018

 / 

том 16 / 

выпуск 1

 



Скачать полную версию статьи (в PDF формате)

S. V. Chornobuk, A. O. Goncharenko, O. Yu. Popov, and V. A. Makara
«Structure and Mechanical Properties of Reaction-Moulded \(ZrB_2\)–SiC Ceramics»
0129–0140 (2018)

PACS numbers: 62.20.Qp, 62.23.Pq, 81.05.Je, 81.20.Ev, 81.20.Ka, 82.33.Ln, 82.40.Ck

Композиционная керамика \(ZrB_2\)–SiC успешно синтезирована на основе системы ZrC–Si–B4C–\(ZrB_2\) (x) при температуре \(1800^{\circ}C\) и приложенном давлении 30 МПа методом реакционного горячего прессования. Достигнуто значение относительной плотности ?в???99%. Исследовано влияние содержания реакционной смеси на поведение материалов при спекании, развитие микроструктуры и механические свойства. Установлены механизмы упрочнения керамических композиционных материалов. Показано, что микротвёрдость растёт при возрастании содержания SiC и достигает значения Hv???24 ГПа при содержании реакционной смеси 50% об. Максимальная трещиностойкость составляет 6,2 МПа?м1/2 в образцах с содержанием реакционной смеси 40%.

Keywords: ceramics, zirconium diboride, reaction sintering hot, crack, porosity, microhardness


References
1. R. Loehman, E. Corral, H. P. Dumm, P. Kotula, and R. Tandon, Ultra High Temperature Ceramics for Hypersonic Vehicle Applications (Sandia Report SAND 2006-2925. Unlimited Release. Printed June 2006) (Albuquerque, New Mexico: Sandia National Laboratories: 2006).
2. High-Temperature Materials and Technology (Eds. I. E. Campbell and E. M. Sherwood) (New York: Wiley: 1967).
3. E. V. Clougherty and L. Kaufman, Investigation of Boride Compounds for Very High Temperature Applications (Air Force Technical Documentary Report No. RTD-TDR-63-4096) (Cambridge, MA: ManLabs, Inc.: 1963).
4. S. R. Levine et al., Journal of the European Ceramic Society, 22, Nos. 14-15: 2757 (2002). https://doi.org/10.1016/S0955-2219(02)00140-1
5. NSF-AFOSR Joint Workshop on Future Ultra-High Temperature Materials (Arlington, VA, 13-14 January 2004) (Eds. W. G. Fahrenholtz and G. E. Hilmas).
6. O. N. Grigor'ev, G. A. Frolov, and Yu. Yu. Evdokymenko, Aviatsionno-Kosmicheskaya Tekhnika i Tekhnologiya, 8: 95 (2012).
7. O. M. Grygor'ev, V. V. Skorokhod, A. D. Panasyuk, V. A. Kotenko, V. V. Lychko, O. V. Koroteyev, E. V. Prylutskyy, V. O. Lavrenko, and M. M. Ikonnik, Nauka ta Innovatsii, 8, No. 1: 18 (2012).
8. L. Zhang and K. Kurokawa, Oxid Met. https://doi.org/10.1007/s11085-015-9585-9
9. S. Yu. Saenko, E. A. Svetlychnyi, K. V. Lobach, and A. E. Surkov, Zbirnyk Naukovykh Prats' PAT 'UkrNDI Vognetryviv im. A. S. Berezhnogo', 2012, No. 112: 141 (in Ukrainian).
10. V. S. Krasnorutskyy, S. Yu. Saenko, N. N. Belash et al., VANT, No. 2: 85 (2009) (in Russian).
11. F.-C. Chang, International Conference on Powder Metallurgy and Particulate Materials (New York, May 30-June 3, 2000) (New York: 2000).
12. J. Zhang, P/M Science & Technology Briefs., 5, No. 3: 17 (2003).
13. E. N. Pryamilova, V. Z. Poylov, and Yu. B. Lyamin, Vestnik Perm' NIPU. Khimicheskaya Tekhnologiya i Biotekhnologiya, No. 4: 55 (2014) (in Russian).
14. S. V. Chornobuk, A. Yu. Popov, and V. A. Makara, Sverkhtverdyye Materialy, No. 2: 22 (2009) (in Russian).
15. Y. F. Kazo, S. V. Chernobuk, and P. P. Kogutyuk, Nanosistemi, Nanomateriali, Nanotehnologii, 10, Iss. 1: 27 (2012) (in Russian).
16. S. V. Chornobuk, A. O. Goncharenko, O. Yu. Popov, and V. A. Makara, Metallofiz. Noveishie. Tekhnol., 39, No. 7: 983 (2017) (in Ukrainian).
17. A. I. Slutsker, A. B. Sinani, V. I. Betekhtin, A. G. Kadomtsev, and S. S. Ordan'yan, Zhurnal Tekhnicheskoi Fiziki, 78, Iss. 12: 59 (2008) (in Russian).
18. D. Chicot, D. Mercier, F. Roudet, K. Silva, M. H. Staia, and J. Lesage, Journal of the European Ceramic Society, 27, Iss. 4: 1905 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.06.011
19. A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, and J. Martikainen, Journal of Advanced Ceramics, 2, No. 1: 87 (2013). https://doi.org/10.1007/s40145-013-0047-z
20. A. G. Evans and E. A. Charles, J. Amer. Ceram. Soc., 59, Nos. 7-8: 371 (1976). https://doi.org/10.1090/S0002-9939-1976-0476913-8
21. C. M. Dannels and S. Dutta, Effect of Processing on Fracture Toughness of Silicon Carbide as Determined by Vickers Indentations (March 1989. Report NASA-TM-101456, E-4565, NAS 1.15:101456).
22. O. S. Alekhin, D. V. Korolev, A. K. Suvorov, and K. A. Suvorov, Raschyot Adiabaticheskoy Temperatury Goreniya Ehntal'piynym Metodom: Metodicheskie Ukazaniya [Calculation of the Adiabatic Combustion Temperature by the Enthalpy Method: Methodical Instructions] (St. Petersburg: SPbGTI(TU): 2001) (in Russian).
23. Semiconductors and Semimetals. A Treatise (Eds. R. K. Willardson and E. R. Weber). Vol. 52: SiC Materials and Devices (Ed. Y.-S. Park) (San Diego, CA: Academic Press: 1998), p. 1.
24. Properties of Silicon Carbide (SiC) (Ed. G. Harris) (London: INSPEC, The Institution of Electrical Engineers: 1995).
25. G. V. Samsonov, T. I. Serebryakova, and V. A. Neronov, Boridy [Borides] (Moscow: Atomizdat: 1975) (in Russian).
26. W.-W. Wu, G.-J. Zhang, Y.-M. Kan, and Y. Sakk, Ceramics International, 39: 7273 (2013). https://doi.org/10.1016/j.ceramint.2013.02.028
27. P. Barick, D. Chakravarty, B.-P. Saha, R. Mitra, and S. V. Joshi, Ceramics International, 42, No. 3: 3836 (2016). https://doi.org/10.1016/j.ceramint.2015.11.048
28. Ch. Xu and Dm. Sun, Mater. Sci. Eng. A, 491: 338 (2008). https://doi.org/10.1016/j.msea.2008.02.029
29. Q. Liu, W. Han, X. Zhang, S. Wang, and J. Han, Materials Letters, 63: 1323 (2009). https://doi.org/10.1016/j.matlet.2009.02.054
30. P. L. Swanson, C. L. Fairbanks, B. R. Lawn, Y. W. Mai, B. J. Hockey, J. Am. Ceram. Soc., 70: 279 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb04982.x
31. P. F. Becher, Toughening Mechanisms in Quasi-Brittle Materials. NATO ASI Series. Series E: Applied Sciences (Ed. S. P. Shah) (Dordrecht: Springer: 1991), vol. 195, p. 19. https://doi.org/10.1007/978-94-011-3388-3_2
32. Y.-W. Mai and B. Lawn, Am. Ceram. Soc., 70, No. 4: 289 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb04983.x
Creative Commons License
Все статьи доступны по Лицензии Creative Commons “Attribution-NoDerivatives” («атрибуция — без производных статей») 4.0 Всемирная
©2003—2021 НАНОСИСТЕМЫ, НАНОМАТЕРИАЛЫ, НАНОТЕХНОЛОГИИ Институт металлофизики им. Г.В. Курдюмова Национальной Академии наук Украины.

Электронная почта: tatar@imp.kiev.ua Телефоны и адрес редакции О сборнике Пользовательское соглашение