Download the full
version of the article (in PDF format)
Yana SYCHIKOVA, Sergii KOVACHOV, Ihor BOHDANOV, Ivan KOSOGOV,
Daria DROZHCHA, Zhakyp T. KARIPBAYEV, and Anatoli I. POPOV
Investigation of the Dynamics of Electrochemical
Dissolution of n-InP(111) in Various Electrolyte Compositions and Determination of Optimal Etching
Conditions
1025–1037 (2024)
PACS numbers: 81.15.Pq, 81.16.Be, 81.65.Cf, 82.45.Mp, 82.45.Qr, 82.45.Yz, 82.47.Wx
We present a study on the dynamics of the electrochemical dissolution of n-InP(111),
explicitly analysing the behaviour of the ‘electrolyte–semiconductor’ system in different electrolyte
compositions, based on the analysis of critical points of the electrochemical reaction. Critical points are
defined as characteristics of the technological process, where active phase dissolution of the sample
surface is observed. We determine the minimum and maximum current-density values required to initiate the
pore formation process on the surface of n-InP(111) in different electrolyte compositions. Additionally, for
all cases, the duration of the active phase of surface dissolution and the Flade’s potential values are
determined. This allows us to establish optimal parameters for treatment time, current density, and
anodizing voltage for etching n-InP(111) in aqueous and alcoholic solutions of hydrochloric, hydrofluoric,
and nitric acids. This, in turn, enables understanding and investigation of the kinetics of electrochemical
surface dissolution as an essential result for unifying the requirements of the technological process of
nanostructuring the surface of indium phosphide. The tools presented for analysing the dynamics of the
electrochemical dissolution of n-InP can be applied to assess the behaviour of various semiconductors during
electrochemical etching
KEY WORDS: electrochemical etching, electrochemical reaction, electrolyte, Flade’s potential, critical points, optimal conditions
DOI: https://doi.org/10.15407/nnn.22.04.1025
REFERENCES
- I. Karbovnyk, B. Sadoviy, B. Turko, P. K. Khanna, and A. V. Kukhta, Opt. Quantum Electron., 53, No. 11: 647 (2021); https://doi.org/10.1007/s11082-021-03292-1
- J. A. Suchikova, V. V. Kidalov, and G. A. Sukach, ECS Trans., 25, No. 24: 59 (2009); https://doi.org/10.1149/1.3316113
- S. Kumar, G. Saeed, L. Zhu, K. N. Hui, N. H. Kim, and J. H. Lee, Chem. Eng. J., 403: 126352 (2021); https://doi.org/10.1016/j.cej.2020.126352
- Y. O. Suchikova, I. T. Bogdanov, S. S. Kovachov, V. O. Myroshnychenko, and N. Y. Panova, Arch. Mater. Sci. Eng., 101, No. 1: 15 (2020); https://doi.org/10.5604/01.3001.0013.9502
- M. J. Molaei, Anal. Methods, 12, No. 10: 1266 (2020); https://doi.org/10.1039/C9AY02696G
- R. B. Rajput, S. N. Jamble, and R. B. Kale, J. Environ. Manage., 307: 114533 (2022); https://doi.org/10.1016/j.jenvman.2022.114533
- F. I. Danilov, D. A. Bogdanov, and V. S. Protsenko, Vopr. Khim. Khim. Tekhnol., 2: 3 (2022); https://doi.org/10.32434/0321-4095-2022-141-2-3-8
- Y. S. Yana, Handbook of Nanoelectrochemistry: Electrochem. Synth. Methods, Prop., Charact. Tech., 283 (2016); https://doi.org/10.1007/978-3-319-15266-0_9
- J. A. Suchikova, V. V. Kidalov, and G. A. Sukach, Funct. Mater., 17, No. 1: 131 (2010); J. A. Suchikova, V. V. Kidalov, and G. A. Sukach, Semiconductors, 45, No. 1: 121 (2011); https://doi.org/10.1134/S1063782611010192
- S. S. Kovachov, I. T. Bogdanov, D. O. Pimenov, V. V. Bondarenko, A. A. Konovalenko, and M. M. Skurska, Arch. Mater. Sci. Eng., 110, No. 1: 18 (2021); https://doi.org/10.5604/01.3001.0015.3592
- C. Joseph Kennady, A. Leo, and P. Esther, Vopr. Khim. Khim. Tekhnol., 2: 17 (2022); https://doi.org/10.32434/0321-4095-2022-141-2-17-23
- Abay Usseinov, Zhanymgul Koishybayeva, Alexander Platonenko, Vladimir Pankratov, Yana Suchikova, Abdirash Akilbekov, Maxim Zdorovets, Juris Purans, and Anatoli I. Popov, Mater., 14, No. 23: 7384 (2021); https://doi.org/10.3390/ma14237384
- A. Usseinov, Z. Koishybayeva, A. Platonenko, A. Akilbekov, J. Purans, and V. Pankratov, Latv. J. Phys. Tech. Sci., 58, No. 2: 3 (2021); https://doi.org/10.2478/lpts-2021-0007
- Y. A. Suchikova, V. V. Kidalov, and G. A. Sukach, J. Nano- Electron. Phys., 1, No. 4: 78 (2009).
- Niankun Guo, Hui Xue, Amurisana Bao, Zihong Wang, Jing Sun, Tianshan Song, Xin Ge, Wei Zhang, Keke Huang, Feng He, and Qin Wang, Angewandte Chemie, 132, No. 33: 13882 (2020); https://doi.org/10.1002/ange.202002394
- Y. A. Suchikova, V. V. Kidalov, and G. A. Sukach, Semiconductors, 45, No. 1: 121 (2011); https://doi.org/10.1134/S1063782611010192
|