Issues

 / 

2024

 / 

vol. 22 / 

issue 4

 



Download the full version of the article (in PDF format)

Yana SYCHIKOVA, Sergii KOVACHOV, Ihor BOHDANOV, Ivan KOSOGOV, Daria DROZHCHA, Zhakyp T. KARIPBAYEV, and Anatoli I. POPOV

Investigation of the Dynamics of Electrochemical Dissolution of n-InP(111) in Various Electrolyte Compositions and Determination of Optimal Etching Conditions
1025–1037 (2024)

PACS numbers: 81.15.Pq, 81.16.Be, 81.65.Cf, 82.45.Mp, 82.45.Qr, 82.45.Yz, 82.47.Wx

We present a study on the dynamics of the electrochemical dissolution of n-InP(111), explicitly analysing the behaviour of the ‘electrolyte–semiconductor’ system in different electrolyte compositions, based on the analysis of critical points of the electrochemical reaction. Critical points are defined as characteristics of the technological process, where active phase dissolution of the sample surface is observed. We determine the minimum and maximum current-density values required to initiate the pore formation process on the surface of n-InP(111) in different electrolyte compositions. Additionally, for all cases, the duration of the active phase of surface dissolution and the Flade’s potential values are determined. This allows us to establish optimal parameters for treatment time, current density, and anodizing voltage for etching n-InP(111) in aqueous and alcoholic solutions of hydrochloric, hydrofluoric, and nitric acids. This, in turn, enables understanding and investigation of the kinetics of electrochemical surface dissolution as an essential result for unifying the requirements of the technological process of nanostructuring the surface of indium phosphide. The tools presented for analysing the dynamics of the electrochemical dissolution of n-InP can be applied to assess the behaviour of various semiconductors during electrochemical etching

KEY WORDS: electrochemical etching, electrochemical reaction, electrolyte, Flade’s potential, critical points, optimal conditions

DOI:  https://doi.org/10.15407/nnn.22.04.1025

REFERENCES
  1. I. Karbovnyk, B. Sadoviy, B. Turko, P. K. Khanna, and A. V. Kukhta, Opt. Quantum Electron., 53, No. 11: 647 (2021); https://doi.org/10.1007/s11082-021-03292-1
  2. J. A. Suchikova, V. V. Kidalov, and G. A. Sukach, ECS Trans., 25, No. 24: 59 (2009); https://doi.org/10.1149/1.3316113
  3. S. Kumar, G. Saeed, L. Zhu, K. N. Hui, N. H. Kim, and J. H. Lee, Chem. Eng. J., 403: 126352 (2021); https://doi.org/10.1016/j.cej.2020.126352
  4. Y. O. Suchikova, I. T. Bogdanov, S. S. Kovachov, V. O. Myroshnychenko, and N. Y. Panova, Arch. Mater. Sci. Eng., 101, No. 1: 15 (2020); https://doi.org/10.5604/01.3001.0013.9502
  5. M. J. Molaei, Anal. Methods, 12, No. 10: 1266 (2020); https://doi.org/10.1039/C9AY02696G
  6. R. B. Rajput, S. N. Jamble, and R. B. Kale, J. Environ. Manage., 307: 114533 (2022); https://doi.org/10.1016/j.jenvman.2022.114533
  7. F. I. Danilov, D. A. Bogdanov, and V. S. Protsenko, Vopr. Khim. Khim. Tekhnol., 2: 3 (2022); https://doi.org/10.32434/0321-4095-2022-141-2-3-8
  8. Y. S. Yana, Handbook of Nanoelectrochemistry: Electrochem. Synth. Methods, Prop., Charact. Tech., 283 (2016); https://doi.org/10.1007/978-3-319-15266-0_9
  9. J. A. Suchikova, V. V. Kidalov, and G. A. Sukach, Funct. Mater., 17, No. 1: 131 (2010); J. A. Suchikova, V. V. Kidalov, and G. A. Sukach, Semiconductors, 45, No. 1: 121 (2011); https://doi.org/10.1134/S1063782611010192
  10. S. S. Kovachov, I. T. Bogdanov, D. O. Pimenov, V. V. Bondarenko, A. A. Konovalenko, and M. M. Skurska, Arch. Mater. Sci. Eng., 110, No. 1: 18 (2021); https://doi.org/10.5604/01.3001.0015.3592
  11. C. Joseph Kennady, A. Leo, and P. Esther, Vopr. Khim. Khim. Tekhnol., 2: 17 (2022); https://doi.org/10.32434/0321-4095-2022-141-2-17-23
  12. Abay Usseinov, Zhanymgul Koishybayeva, Alexander Platonenko, Vladimir Pankratov, Yana Suchikova, Abdirash Akilbekov, Maxim Zdorovets, Juris Purans, and Anatoli I. Popov, Mater., 14, No. 23: 7384 (2021); https://doi.org/10.3390/ma14237384
  13. A. Usseinov, Z. Koishybayeva, A. Platonenko, A. Akilbekov, J. Purans, and V. Pankratov, Latv. J. Phys. Tech. Sci., 58, No. 2: 3 (2021); https://doi.org/10.2478/lpts-2021-0007
  14. Y. A. Suchikova, V. V. Kidalov, and G. A. Sukach, J. Nano- Electron. Phys., 1, No. 4: 78 (2009).
  15. Niankun Guo, Hui Xue, Amurisana Bao, Zihong Wang, Jing Sun, Tianshan Song, Xin Ge, Wei Zhang, Keke Huang, Feng He, and Qin Wang, Angewandte Chemie, 132, No. 33: 13882 (2020); https://doi.org/10.1002/ange.202002394
  16. Y. A. Suchikova, V. V. Kidalov, and G. A. Sukach, Semiconductors, 45, No. 1: 121 (2011); https://doi.org/10.1134/S1063782611010192
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement