Download the full
version of the article (in PDF format)
O.M. BORDUN, I.I. MEDVID, ².Yo. KUKHARSKYY, I.O. BORDUN,
M.V. PROTSAK, V.G. BIHDAY, I.S. KUZ, A.I. TYSLYUK, R.V. PAVLIUS, and
D.S. LEONOV
Surface Morphology of
ZnGa2O4:Mn Thin Films Obtained by RF Ion-Plasma Sputtering on Quartz
Substrates
823–832 (2024)
PACS numbers: 61.72.Ff, 61.72.Mm, 68.37.Ps, 68.55. J-, 79.60.Dp, 81.15.Cd, 81.40.Ef
Thin films of ZnGa2O4:Mn are obtained by means of the radio-frequency ion-plasma
sputtering in an argon atmosphere on amorphous nu-SiO2 substrates. The study of the surface morphology of
ZnGa2O4:Mn thin films by means of atomic force microscopy shows that heat treatment in an air atmosphere
increases the average grain diameter from 113 nm in an unannealed film to 274 nm in an annealed sample.
Additionally, the root-mean-square (RMS) roughness of the thin-film surface is increased from 3.8 nm to 6.2
nm, respectively. The analyses of the distributions of crystallites in diameter and volume are carried out,
and it is shown that the process of heat treatment of thin films leads to grain growth due to the processes
of growth and sintering
KEY WORDS: zinc gallate, magnesium activator, thin films, crystallites, surface morphology, atomic force microscopy, annealing of films
DOI: https://doi.org/10.15407/nnn.22.04.823
REFERENCES
- Dongyang Han, Kewei Liu, Qichao Hou, Xing Chen, Jialin Yang, Binghui Li, Zhenzhong Zhang, Lei Liu, and Dezhen Shen, Sens. Actuators A Phys., 315: 112354 (2020); https://doi.org/10.1016/j.sna.2020.112354
- Chengling Lu, Qingyi Zhang, Shan Li, Zuyong Yan, Zeng Liu, Peigang Li, and Weihua Tang, J. Phys. D: Appl. Phys., 54: 405107 (2021); doi:10.1088/1361-6463/ac1465
- Jia-Hang Liu, Lei Li, Fan Zhang, Ya-Ping Qi, Zhen-Ping Wu, and Wei-Hua Tang, Phys. Scr., 99: 055538 (2024); doi:10.1088/1402-4896/ad3b4f
- Ray-Hua Horng, Chiung-Yi Huang, Sin-Liang Ou, Tzu-Kuang Juang, and Po-Liang Liu, Cryst. Growth Des., 17: 6071 (2017); https://doi.org/10.1021/acs.cgd.7b01159
- Si-Han Tsai, Yuan-Chu Shen, Chiung-Yi Huang, and Ray-Hua Horng, Appl. Surf. Science, 496: 143670 (2019); https://doi.org/10.1016/j.apsusc.2019.143670
- Weiwei Zhang, Junying Zhang, Yuan Li, Ziyu Chen, and Tianmin Wang, Appl. Surf. Sci., 256, No. 14: 4702 (2010); https://doi.org/10.1016/j.apsusc.2010.02.077
- Anoop Kumar Singh, Shiau-Yuan Huang, Po-Wei Chen, Jung-Lung Chiang, and Dong-Sing Wuu, Nanomaterials, 11: 2316 (2021); https://doi.org/10.3390/nano11092316
- Mohammad M. Afandi and Jongsu Kim, Journal of Science: Advanced Materials and Devices, 8, No. 1: 100531 (2023); https://doi.org/10.1016/j.jsamd.2022.100531
- Wanmin Lin, Dan Zhang, Sixian Liu, Yuqiang Li, Wei Zheng, and Feng Huang, Mater. Lett., 283: 128805 (2021); https://doi.org/10.1016/j.matlet.2020.128805
- Ray-Hua Horng, Peng-Hsuan Huang, Yun-Sheng Li, Fu-Gow Tarntair, and Chih Shan Tan, Appl. Surf. Sci., 555: 149657 (2021); https://doi.org/10.1016/j.apsusc.2021.149657
- Yi-Siang Shen, Wei-Kai Wang, and Ray-Hua Horng, Journal of the Electron Devices Society, 5, No. 2: 112 (2017); doi:10.1109/JEDS.2017.2653419
- Kiyotaka Wasa, Makoto Kitabatake, and Hideaki Adachi, Thin Film Materials Technology. Sputtering of Compound Materials (William Andrew Inc.: 2004).
- O. M. Bordun, I. Yo. Kukharskyy, and V. G. Bihday, J. Appl. Spectrosc., 78, No. 6: 922 (2012); https://doi.org/10.1007/s10812-012-9555-9
- Wei-Kai Wang, Kuo-Feng Liu, Pi-Chuen Tsai, Yi-Jie Xu, and Shih-Yung Huang, Coatings, 9: 859 (2019); doi:10.3390/coatings9120859
- O. M. Bordun, I. O. Bordun, I. I. Medvid, M.V. Protsak, I. Yo. Kukharskyy, V. G. Bihday, I. M. Kofliuk, I. Yu. Khomyshyn, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 21, Iss. 4: 709 (2023); https://doi.org/10.15407/nnn.21.04.709
- O. M. Bordun, V. G. Bihday, ². Yo. Kukharskyy, ². ². Medvid, ². Ì. Kofliuk, I. Yu. Khomyshyn, Zh. Ya. Tsapovska, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 21, Iss. 2: 403 (2023); https://doi.org/10.15407/nnn.21.02.403
- Carl V. Thompson, Sol. State Phys., 55: 269 (2001); https://doi.org/10.1016/S0081-1947(01)80006-0
- Carl V. Thompson, J. Appl. Phys., 58: 763 (1985); https://doi.org/10.1063/1.336194
- O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, I. I. Medvid, I. I. Polovynko, Zh. Ya. Tsapovska, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 19, Iss. 1: 159 (2021); https://doi.org/10.15407/nnn.19.01.159
- O. M. Bordun, B. O. Bordun, I. I. Medvid, M. V. Protsak, I. Yo. Kukharskyy, K. L. Biliak, D. M. Maksymchuk, I. M. Kofliuk, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 22, Iss. 1: 1 (2024); https://doi.org/10.15407/nnn.22.01.001
- J. E. Palmer, C. V. Thompson, and Henry L. Smith, J. Appl. Phys., 62, No. 6: 2492 (1987); http://dx.doi.org/10.1063/1.339460
|