Issues

 / 

2024

 / 

vol. 22 / 

issue 4

 



Download the full version of the article (in PDF format)

O.M. BORDUN, I.I. MEDVID, ².Yo. KUKHARSKYY, I.O. BORDUN, M.V. PROTSAK, V.G. BIHDAY, I.S. KUZ, A.I. TYSLYUK, R.V. PAVLIUS, and D.S. LEONOV

Surface Morphology of ZnGa2O4:Mn Thin Films Obtained by RF Ion-Plasma Sputtering on Quartz Substrates
823–832 (2024)

PACS numbers: 61.72.Ff, 61.72.Mm, 68.37.Ps, 68.55. J-, 79.60.Dp, 81.15.Cd, 81.40.Ef

Thin films of ZnGa2O4:Mn are obtained by means of the radio-frequency ion-plasma sputtering in an argon atmosphere on amorphous nu-SiO2 substrates. The study of the surface morphology of ZnGa2O4:Mn thin films by means of atomic force microscopy shows that heat treatment in an air atmosphere increases the average grain diameter from 113 nm in an unannealed film to 274 nm in an annealed sample. Additionally, the root-mean-square (RMS) roughness of the thin-film surface is increased from 3.8 nm to 6.2 nm, respectively. The analyses of the distributions of crystallites in diameter and volume are carried out, and it is shown that the process of heat treatment of thin films leads to grain growth due to the processes of growth and sintering

KEY WORDS: zinc gallate, magnesium activator, thin films, crystallites, surface morphology, atomic force microscopy, annealing of films

DOI:  https://doi.org/10.15407/nnn.22.04.823

REFERENCES
  1. Dongyang Han, Kewei Liu, Qichao Hou, Xing Chen, Jialin Yang, Binghui Li, Zhenzhong Zhang, Lei Liu, and Dezhen Shen, Sens. Actuators A Phys., 315: 112354 (2020); https://doi.org/10.1016/j.sna.2020.112354
  2. Chengling Lu, Qingyi Zhang, Shan Li, Zuyong Yan, Zeng Liu, Peigang Li, and Weihua Tang, J. Phys. D: Appl. Phys., 54: 405107 (2021); doi:10.1088/1361-6463/ac1465
  3. Jia-Hang Liu, Lei Li, Fan Zhang, Ya-Ping Qi, Zhen-Ping Wu, and Wei-Hua Tang, Phys. Scr., 99: 055538 (2024); doi:10.1088/1402-4896/ad3b4f
  4. Ray-Hua Horng, Chiung-Yi Huang, Sin-Liang Ou, Tzu-Kuang Juang, and Po-Liang Liu, Cryst. Growth Des., 17: 6071 (2017); https://doi.org/10.1021/acs.cgd.7b01159
  5. Si-Han Tsai, Yuan-Chu Shen, Chiung-Yi Huang, and Ray-Hua Horng, Appl. Surf. Science, 496: 143670 (2019); https://doi.org/10.1016/j.apsusc.2019.143670
  6. Weiwei Zhang, Junying Zhang, Yuan Li, Ziyu Chen, and Tianmin Wang, Appl. Surf. Sci., 256, No. 14: 4702 (2010); https://doi.org/10.1016/j.apsusc.2010.02.077
  7. Anoop Kumar Singh, Shiau-Yuan Huang, Po-Wei Chen, Jung-Lung Chiang, and Dong-Sing Wuu, Nanomaterials, 11: 2316 (2021); https://doi.org/10.3390/nano11092316
  8. Mohammad M. Afandi and Jongsu Kim, Journal of Science: Advanced Materials and Devices, 8, No. 1: 100531 (2023); https://doi.org/10.1016/j.jsamd.2022.100531
  9. Wanmin Lin, Dan Zhang, Sixian Liu, Yuqiang Li, Wei Zheng, and Feng Huang, Mater. Lett., 283: 128805 (2021); https://doi.org/10.1016/j.matlet.2020.128805
  10. Ray-Hua Horng, Peng-Hsuan Huang, Yun-Sheng Li, Fu-Gow Tarntair, and Chih Shan Tan, Appl. Surf. Sci., 555: 149657 (2021); https://doi.org/10.1016/j.apsusc.2021.149657
  11. Yi-Siang Shen, Wei-Kai Wang, and Ray-Hua Horng, Journal of the Electron Devices Society, 5, No. 2: 112 (2017); doi:10.1109/JEDS.2017.2653419
  12. Kiyotaka Wasa, Makoto Kitabatake, and Hideaki Adachi, Thin Film Materials Technology. Sputtering of Compound Materials (William Andrew Inc.: 2004).
  13. O. M. Bordun, I. Yo. Kukharskyy, and V. G. Bihday, J. Appl. Spectrosc., 78, No. 6: 922 (2012); https://doi.org/10.1007/s10812-012-9555-9
  14. Wei-Kai Wang, Kuo-Feng Liu, Pi-Chuen Tsai, Yi-Jie Xu, and Shih-Yung Huang, Coatings, 9: 859 (2019); doi:10.3390/coatings9120859
  15. O. M. Bordun, I. O. Bordun, I. I. Medvid, M.V. Protsak, I. Yo. Kukharskyy, V. G. Bihday, I. M. Kofliuk, I. Yu. Khomyshyn, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 21, Iss. 4: 709 (2023); https://doi.org/10.15407/nnn.21.04.709
  16. O. M. Bordun, V. G. Bihday, ². Yo. Kukharskyy, ². ². Medvid, ². Ì. Kofliuk, I. Yu. Khomyshyn, Zh. Ya. Tsapovska, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 21, Iss. 2: 403 (2023); https://doi.org/10.15407/nnn.21.02.403
  17. Carl V. Thompson, Sol. State Phys., 55: 269 (2001); https://doi.org/10.1016/S0081-1947(01)80006-0
  18. Carl V. Thompson, J. Appl. Phys., 58: 763 (1985); https://doi.org/10.1063/1.336194
  19. O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, I. I. Medvid, I. I. Polovynko, Zh. Ya. Tsapovska, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 19, Iss. 1: 159 (2021); https://doi.org/10.15407/nnn.19.01.159
  20. O. M. Bordun, B. O. Bordun, I. I. Medvid, M. V. Protsak, I. Yo. Kukharskyy, K. L. Biliak, D. M. Maksymchuk, I. M. Kofliuk, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 22, Iss. 1: 1 (2024); https://doi.org/10.15407/nnn.22.01.001
  21. J. E. Palmer, C. V. Thompson, and Henry L. Smith, J. Appl. Phys., 62, No. 6: 2492 (1987); http://dx.doi.org/10.1063/1.339460
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement