Issues

 / 

2024

 / 

vol. 22 / 

issue 4

 



Download the full version of the article (in PDF format)

F.M. BUKHANKO

Excitation of 2D Majorana Fermions in Two Chiral States of a Quantum Spin Liquid in La0.15Sm0.85MnO3+delta Manganites Controlled by External Magnetic Field
769–784 (2024)

PACS numbers: 71.10.Pm, 73.43.Qt, 75.30.Et, 75.30.Kz, 75.47.Gk, 75.47.Lx, 81.05.Zx

In this work, we investigated the evolution of the low-energy spinon-pairs’ excitation in the first Landau zone in frustrated La0.15Sm0.85MnO3+delta manganites, caused by changes in the strength H of the measuring field. In samples La0.15Sm0.85MnO3+delta, an alternation of spiky double—peaks and truncated-hill—features of ‘supermagnetization’ M(T), characteristic of two types of excitation of 2D Majorana fermions in hidden topological states CSL1 and CSL2 of quantum chiral spin liquid (CSL), was detected

KEY WORDS: quantum spin liquid, Majorana zero modes, Dirac semi-metal, chiral spin liquid, frustrated manganites

DOI:  https://doi.org/10.15407/nnn.22.04.769

REFERENCES
  1. K. Laubscher and J. Klinovaja, arXiv:2104.14459v2 [cond-mat.mes-hall] (13 Aug 2021).
  2. G. Moore G and N. Read, Nucl. Phys. B, 360: 362 (1991); doi:10.1016/0550-3213(91)90407-O
  3. G. E. Volovik, JETP Lett., 70: 609 (1999); https://doi.org/10.1134/1.568223
  4. N. Read and D. Green, Phys. Rev. B, 61: 10267 (2000); https://doi.org/10.1103/PhysRevB.61.10267
  5. T. Senthil and M. P. A. Fisher, Phys. Rev. B, 61: 9690 (2000); https://doi.org/10.1103/PhysRevB.61.9690
  6. D. A. Ivanov, Phys. Rev. Lett., 86: 268 (2001); https://doi.org/10.1103/PhysRevLett.86.268
  7. G. E. Volovik, JETP Lett., 90: 398 (2003); https://doi.org/10.1134/S0021364009170172
  8. S. Huang, arXiv:2111.06703v2 [cond-mat.str-el] (16 Nov 2021).
  9. A. Y. Kitaev, Ann. Phys., 303: 2 (2009); doi:10.1016/S0003-4916(02)00018-0
  10. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, Rev. Mod. Phys., 80: 1083 (2008); https://doi.org/10.1103/RevModPhys.80.1083
  11. S. D. Sarma, M. Freedman, and C. Nayak, arXiv:1501.02813v2 [cond-mat.str-el] (14 May 2015).
  12. Hong Yao and S. A. Kivelson, arXiv:0708.0040v3 [cond-mat.str-el] (14 Dec 2007).
  13. A. Y. Kitaev, Annals of Physics, 321: 2 (2006); https://doi.org/10.1016/j.aop.2005.10.005
  14. F. D. M. Haldane, Phys. Rev. Lett., 61: 2015 (1988); http://dx.doi.org/10.1103/PhysRevLett.61.2015
  15. H. Polshyn, Y. Zhang, M. A. Kumar, T. Soejima, P. Ledwith, K. Watanabe, T. Taniguchi, A. Vishwanath, M. P. Zaletel, and A. F. Young, arXiv:2104.01178v1 [cond-mat.str-el] (2 Apr 2021).
  16. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett., 48: 1559 (1982); doi:10.1103/PhysRevLett.48.1559
  17. L. Wang, Y. Gao, B. Wen, Z. Han, T. Taniguchi, K. Watanabe, M. Koshino, J. Hone, and C. R. Dean, Science, 350: 1231 (2015); doi:10.1126/science.aad2102
  18. E. M. Spanton, A. A. Zibrov, H. Zhou, T. Taniguchi, K. Watanabe, M. P. Zaletel, and A. F. Young, Science, 360: 62 (2018); doi:10.1126/science.aan8458
  19. G. Chen, A. L. Sharpe, E. J. Fox, Y.-H. Zhang, S. Wang, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, Z. Shi, T. Senthil, D. Goldhaber-Gordon, Y. Zhang, and F. Wang, Nature, 579: 56 (2020); doi:10.1038/s41586-020-2049-7
  20. P. Stepanov, M. Xie, T. Taniguchi, K. Watanabe, X. Lu, A. H. MacDonald, B. A. Bernevig, and D. K. Efetov, arXiv:2012.15126 [cond-mat] (2020).
  21. H. Polshyn, J. Zhu, M. A. Kumar, Y. Zhang, F. Yang, C. L. Tschirhart, M. Serlin, K. Watanabe, T. Taniguchi, A. H. MacDonald, and A. F. Young, Nature, 588: 66 (2020); doi:10.48550/arXiv.2210.06506
  22. Y.-H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, and T. Senthil, Phys. Rev. B, 99: 075127 (2019); https://doi.org/10.1103/PhysRevB.99.075127
  23. P. J. Ledwith, G. Tarnopolsky, E. Khalaf, and A. Vishwanath, Physical Review Research, 2: 023237 (2020); https://doi.org/10.1103/PhysRevResearch.2.023238
  24. C. Repellin and T. Senthil, Physical Review Research, 2: 023238 (2020); doi:10.1103/PhysRevResearch.2.023238
  25. Shuo-Ying Yang, Hao Yang, E. Derunova, Stuart S. P. Parkin, Binghai Yan, and Mazhar N. Ali, Advances in Physics: X, 1 (2017); doi:10.1080/23746149.2017.1414631
  26. F. N. Bukhanko and A. F. Bukhanko, Fizika Tverdogo Tela, 63: 639 (2021); doi:10.21883/FTT.2021.05.50814.006
  27. F. N. Bukhanko and A. F. Bukhanko, Fizika Tverdogo Tela, 64: 181 (2022); doi:10.21883/FTT.0000000000
  28. J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner, Phys. Rev. Lett., 112: 207203-1 (2014); https://doi.org/10.1103/PhysRevLett.112.207203
  29. J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner, Phys. Rev. B, 92: 115127 (2015); https://doi.org/10.1103/PhysRevB.92.115127
  30. J. Knolle and R. Moessner, Annu. Rev. Condens. Matter Phys., 10: 451 (2019); https://doi.org/10.1146/annurev-conmatphys-031218-013401
  31. S. A. Kivelson, I. P. Bindloss, E. Fradkin, V. Oganesyan, J. M. Tranquada, A. Kapitulnik, and C. Howald, Rev. Mod. Phys., 75: 1201 (2003); https://doi.org/10.1103/RevModPhys.75.1201
  32. V. Lahtinen, New J. Phys., 13: 075009 (2011); doi:10.1088/1367-2630/13/7/075009
  33. G. Baskaran, S. Mandal, and R. Shankar, Phys. Rev. Lett., 98: 247201 (2007); https://doi.org/10.1103/PhysRevLett.98.247201
  34. J. Knolle and R. Moessner, arXiv:1804.02037v1 [cond-mat.str-el] (5 Apr 2018).
  35. T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and Matthew P. A. Fisher, Science, 303: 1490 (2004); doi:10.1126/science.1091806
  36. Anders W. Sandvik, Phys. Rev. Lett., 98: 227202 (2007); https://doi.org/10.1103/PhysRevLett.98.227202
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement