Issues

 / 

2024

 / 

vol. 22 / 

issue 3

 



Download the full version of the article (in PDF format)

ISRAA AKRAM ABBAS, AMEERA J. KADHM, and RAHEEM LAFTA ALI

Study of the Effect of Li Doping on ZnO Films Using RF-Magnetron Sputtering Method at Low Temperature
623–636 (2024)

PACS numbers: 73.61.-r, 77.22.Ch, 77.22.Gm, 78.66.Li, 78.67.Sc, 81.15.Cd, 81.40.Tv

In this study, we investigate the effect of Li-doping concentrations (3, 6, and 9%) on the optical and electrical properties of Li-doped ZnO-containing films. Li-doped ZnO films are fabricated by the RF-magnetron sputtering process. The optical and electrical properties of thin-film deposition at different sputtering RF powers in the plasma chamber are investigated. The electrical and optical properties of the thin layer are studied. The results for the optical properties of thin films (ZnO/Li) show that the absorbance, absorption coefficient, and optical conductivity increase with increasing Li concentration, while the energy band gap and transmittance decrease with increasing Li concentration. For all tested temperatures, the D.C. conductivity of the ZnO film increases after Li doping. The D.C. test shows that all films have the same activation energy, and the value of this energy increases as the Li-doping ratio increases. The electrical properties of alternating current demonstrate that, as the frequency of the electric field increases, the dielectric constant and dielectric loss of all films decrease

KEY WORDS: ZnO films, RF-magnetron sputtering method, Li doping, nanocomposite, optical and electrical properties

DOI:  https://doi.org/10.15407/nnn.22.03.623

REFERENCES
  1. J. Wang, H. Pan, X. Xu, H. Jin, W. Ma, S. Xiong, Q. Bao, Z. Tang, and Z. Ma, ACS Appl. Mater. Interface, 14, No. 10: 12450 (2022); https://doi.org/10.1021/acsami.1c22093
  2. E. Cheng, S. Huang, D. Chen, R. Huang, Q. Wang, Z. Hu, Y. Jiang, Z. Li, B. Zhao, and Z. Chen, Acta Crystallogr. C: Struct. Chem., 75, No. 7: 969 (2019); https://doi.org/10.1107/S2053229619008222
  3. P. Bhat and S. K. Naveen Kumar, J. Mater. Sci.: Mater. in Elect., 33, No. 3: 1529 (2022); https://doi.org/10.1007/s10854-021-07664-x
  4. K. Singh, H. Kaur, P.K. Sharma, G. Singh, and J. Singh, Chemosphere, 313: 137322 (2023); https://doi.org/10.1016/j.chemosphere.2022.137322
  5. G. Voicu, D. Miu, C. D. Ghitulica, S. I. Jinga, A. I. Nicoara, C. Busuioc, and A. M. Holban, Ceram. Int., 46, No. 3: 3904 (2020); https://doi.org/10.1016/j.ceramint.2019.10.118
  6. X. Zhao, K. Nagashima, G. Zhang, T. Hosomi, H. Yoshida, Y. Akihiro, M. Kanai, W. Mizukami, Z. Zhu, T. Takahashi, and M. Suzuki, Nano Lett., 20, No. 1: 599 (2019); https://doi.org/10.1021/acs.nanolett.9b04367
  7. L. Tang, Y. Jia, Z. Zhu, Y. Hua, J. Wu, Z. Zou, and Y. Zhou, Molecules, 27, No. 3: 833 (2022); https://doi.org/10.3390%2Fmolecules27030833
  8. M. Kwoka, E. Comini, D. Zappa, and J. Szuber, Nanomaterials, 12, No. 15: 2666 (2022); https://doi.org/10.3390%2Fnano12152666
  9. X. Zhan, F. Gao, Q. Zhuang, Y. Zhang, and J. Dang, ACS Omega, 7, No. 10: 8960 (2022); https://doi.org/10.1021%2Facsomega.1c07370
  10. S. Nandi, S. Kumar, and A. Misra, Mater. Adv., 2, No. 21: 6768 (2021); https://doi.org/10.1039/D1MA00670C
  11. L. Fan, T. Xiao, C. Zhong, J. Wang, J. Chen, X. Wang, L. Peng, and W. Wu, Cryst. Eng. Comm., 21, No. 8: 1288 (2019); https://doi.org/10.1039/c8ce01886c
  12. S. Y. Tsai, M. H. Hon, and Y. M. Lu, J. Cryst. Growth, 326, No. 1: 85 (2011); https://doi.org/10.1016/j.jcrysgro.2011.01.058
  13. S. Ghosh, G. G. Khan, A. Ghosh, S. Varma, and K. Mandal, Cryst. Eng. Comm., 15, No. 38: 7748 (2013); https://doi.org/10.1039/c3ce40717a
  14. Z. Zhang, K. E. Knutsen, T. Merz, A. Y. Kuznetsov, B. G. Svensson, and L. J. Brillson, J. Phys. D: Appl. Phys., 45, No. 37: 375301 (2012); https://doi.org/10.1088/0022-3727/45/37/375301
  15. S. Yu, L. Ding, H. Zheng, C. Xue, L. Chen, and W. Zhang, Thin Solid Films, 540: 146 (2013); https://doi.org/10.1016/j.tsf.2013.05.125
  16. M. Rahman, M. Kamruzzaman, J. A. Zapien, R. Afrose, T. K. Anam, M. N. Liton, M. A. Helal, and M. K. Khan, Mater. Today Commun., 33: 104278 (2022); https://doi.org/10.1016/j.mtcomm.2022.104278
  17. K.-H. Wu, L.-Y. Peng, M. Januar, K.-C. Chiu, and K.-C. Liu, Thin Solid Films, 570: 417 (2014); https://doi.org/10.1016/j.tsf.2014.03.062
  18. D. Wang, J. Zhou, and G. Liu, J. Alloys Compd., 481, Nos. 1–2: 802 (2009); https://doi.org/10.1016/j.jallcom.2009.03.111
  19. T. T. Wang, M. M. Dai, Y. J. Yan, H. Zhang, and Y. M. Yu, Appl. Mech. Mater., 734: 796 (2015); https://doi.org/10.4028/www.scientific.net/AMM.734.796
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement