Issues

 / 

2024

 / 

vol. 22 / 

issue 2

 



Download the full version of the article (in PDF format)

An.D. ZOLOTARENKO, Ol.D. ZOLOTARENKO, Z.A. MATYSINA, N.A. SHVACHKO, N.Y. AKHANOVA, M. UALKHANOVA, D.V. SHCHUR, M.T. GABDULLIN, Yu.I. ZHIRKO, E.P. RUDAKOVA, T.V. MYRONENKO, M.V. CHYMBAI, I.V. ZAGORULKO, and A.D. ZOLOTARENKO

Paraelectric–Ferroelectric Phase Transformations in Nanodispersed Powders of KDP Crystals
295–322 (2024)

PACS numbers: 62.20.D-, 64.60.Cn, 77.22.Ch, 77.22.Ej, 77.80.Bh, 77.84.Fa, 81.30.Hd

In the given article, a thermodynamic theory for nanodispersed powders of ferroelectrics of various structures, including KDP crystals as potential hydrogen sorbents, is presented. The article presents the statistical theory of KDP crystals developed on the basis of molecular-kinetic concepts, which allows determining, explaining and substantiating their physical properties. The temperature dependence of the order parameter, which is proportional to the degree of spontaneous polarization and deformation, is determined, and the conditions, under which a phase transition in KDP crystals turns out to be a second-order phase transformation close to a first-order one, are elucidated. The Curie temperature of the phase transition is estimated, and the dependences of the order parameter on the intensity of an external electric field or external oriented mechanical stress are established. The configurational heat capacity, its temperature dependence and jumps at the phase-transition point are estimated. The temperature dependences of the direct and inverse permittivities (or susceptibility) are determined. The validity of the Curie–Weiss law for KDP crystals is verified

KEY WORDS: nanodispersed powders, KDP crystals, ordering, Curie temperature, phase transition, molecular-kinetic concepts, ferroelectrics, ferroelastics, paraphase, ferrophase

DOI:  https://doi.org/10.15407/nnn.22.02.295

REFERENCES
  1. D. V. Schur, S. Y. Zaginaichenko, E. A. Lysenko, T. N. Golovchenko, and N. F. Javadov, NATO Science for Peace and Security Series C: Environmental Security, F2: 53 (2008); https://doi.org/10.1007/978-1-4020-8898-8_5
  2. D. V. Schur, S. Y. Zaginaichenko, A. D. Zolotarenko, and T. N. Veziroglu, NATO Science for Peace and Security Series C: Environmental Security, F2: 85 (2008); https://doi.org/10.1007/978-1-4020-8898-8_7
  3. O. D. Zolotarenko, O. P. Rudakova, M. T. Kartel, H. O. Kaleniuk, A. D. Zolotarenko, D. V. Schur, and Y. O. Tarasenko, Poverkhnya, Iss. 12(27): 263 (2020) (in Ukrainian); https://doi.org/10.15407/Surface.2020.12.263
  4. Ol. D. Zolotarenko, O. P. Rudakova, N. E. Akhanova, An. D. Zolotarenko, D. V. Shchur, Z. A. Matysina, M. T. Gabdullin, M. Ualkhanova, N. A. Gavrilyuk, O. D. Zolotarenko, M. V. Chymbai, and I. V. Zagorulko, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 3: 725 (2022); https://doi.org/10.15407/nnn.20.03.725
  5. D. S. Kerimbekov, N. E. Akhanova, M. T. Gabdullin, Kh. A. Abdullin, D. G. Batryshev, A. D. Zolotarenko, N. A. Gavrylyuk, O. D. Zolotarenko, and D. V. Shchur, Journal of Problems in the Evolution of Open Systems, 24, Nos. 3–4: 79 (2023); https://doi.org/10.26577/JPEOS.2022.v24.i2.i6
  6. V. M. Gun’ko, V. V. Turov, V. I. Zarko, G. P. Prykhod’ko, T. V. Krupska, A. P. Golovan, J. Skubiszewska-Zi?ba, B. Charmas, and M. T. Kartel, Chemical Physics, 459: 172 (2015); https://doi.org/10.1016/j.chemphys.2015.08.016
  7. M. M. Nishchenko, S. P. Likhtorovich, A. G. Dubovoy, and T. A. Rashevskaya, Carbon, 41, No. 7: 1381 (2003); https://doi.org/10.1016/S0008-6223(03)00065-4
  8. N. Y. Akhanova, D. V. Schur, N. A. Gavrylyuk, M. T. Gabdullin, N. S. Anikina, An. D. Zolotarenko, O. Ya. Krivushchenko, Ol. D. Zolotarenko, B. M. Gorelov, E. Erlanuli, and D. G. Batrishev, Chemistry, Physics and Technology of Surface, 11, No. 3: 429 (2020); https://doi.org/10.15407/hftp11.03.429
  9. Z. A. Matysina, Ol. D. Zolotarenko, O. P. Rudakova, N. Y. Akhanova, A. P. Pomytkin, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, M. Ualkhanova, N. A. Gavrylyuk, A. D. Zolotarenko, M. V. Chymbai, and I. V. Zagorulko, Prog. Phys. Met., 23, No. 3: 510 (2022); https://doi.org/10.15407/ufm.23.03.510
  10. N. Ye. Akhanova, D. V. Shchur, A. P. Pomytkin, Al. D. Zolotarenko, An. D. Zolotarenko, N. A. Gavrylyuk, M. Ualkhanova, W. Bo, and D. Ang, Journal of Nanoscience and Nanotechnology, 21: 2435 (2021); https://doi.org/10.1166/jnn.2021.18970
  11. O. D. Zolotarenko, E. P. Rudakova, A. D. Zolotarenko, N. Y. Akhanova, M. N. Ualkhanova, D. V. Shchur, M. T. Gabdullin, N. A. Gavrylyuk, T. V. Myronenko, A. D. Zolotarenko, M. V. Chymbai, I. V. Zagorulko, Yu. O. Tarasenko, and O. O. Havryliuk, Him. Fiz. Tehnol. Poverhni, 13, No. 3: 259 (2022); https://doi.org/10.15407/hftp13.03.259
  12. D. V. Schur, A. D. Zolotarenko, A. D. Zolotarenko, O. P. Zolotarenko, M. V. Chimbai, N. Y. Akhanova, M. Sultagazina, and E. P. Zolotarenko, Physical Sciences and Technology, 6, Nos. 1–2: 46 (2019); https://doi.org/10.26577/phst-2019-1-p9
  13. M. Baibarac, I. Baltog, S. Frunza, A. Magrez, D. Schur, and S. Y. Zaginaichenko, Diamond and Related Materials, 32: 72 (2013); https://doi.org/10.1016/j.diamond.2012.12.006
  14. Al. D. Zolotarenko, An. D. Zolotarenko, V. A. Lavrenko, S. Yu. Zaginaichenko, N. A. Shvachko, O. V. Milto, V. B. Molodkin, A. E. Perekos, V. M. Nadutov, and Yu. A. Tarasenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II (Dordrecht: Springer: 2011), p. 127; https://doi.org/10.1007/978-94-007-0899-0_10
  15. M. Ualkhanova, A. Y. Perekos, A. G. Dubovoy, D. V. Schur, Al. D. Zolotarenko, An. D. Zolotarenko, N. A. Gavrylyuk, M. T. Gabdullin, T. S. Ramazanov, N. Akhanova, and S. Orazbayev, Journal of Nanoscience and Nanotechnology Applications, 3, No. 3: 1 (2019); https://doi.org/10.18875/2577-7920.3.302
  16. V. A. Lavrenko, I. A. Podchernyaeva, D. V. Shchur, An. D. Zolotarenko, and Al. D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 56: 504 (2018); https://doi.org/10.1007/s11106-018-9922-z
  17. Ol. D. Zolotarenko, M. N. Ualkhanova, E. P. Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, N. A. Gavrylyuk, A. D. Zolotarenko, M. V. Chymbai, I. V. Zagorulko, and O. O. Havryliuk, Chemistry, Physics and Technology of Surface, 13, No. 2: 209 (2022); https://doi.org/10.15407/hftp13.02.209
  18. Z. A. Matysina, Ol. D. Zolotarenko, M. Ualkhanova, O. P. Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, N. A. Gavrylyuk, O. D. Zolotarenko, M. V. Chymbai, and I. V. Zagorulko, Prog. Phys. Met., 23, No. 3: 528 (2022); https://doi.org/10.15407/ufm.23.03.528
  19. A. D. Zolotarenko, A. D. Zolotarenko, E. P. Rudakova, S. Y. Zaginaichenko, A. G. Dubovoy, D. V. Schur, and Y. A. Tarasenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II (Dordrecht: Springer: 2011), p. 137; https://doi.org/10.1007/978-94-007-0899-0_11
  20. D. V. Schur, A. G. Dubovoy, S. Yu. Zaginaichenko, V. M. Adejev, A. V. Kotko, V. A. Bogolepov, A. F. Savenko, A. D. Zolotarenko, S. A. Firstov, and V. V. Skorokhod, NATO Security through Science Series A: Chemistry and Biology (Dordrecht: Springer: 2007), p. 199; doi:10.1007/978-1-4020-5514-0_25
  21. M. N. Ualkhanova, A. S. Zhakypov, R. R. Nemkayeva, M. B. Aitzhanov, B. Y. Kurbanov, N. Y. Akhanova, Y. Yerlanuly, S. A. Orazbayev, D. Shchur, A. Zolotarenko, and M. T. Gabdullin, Energies, 16, No. 3: 1450 (2023); https://doi.org/10.3390/en16031450
  22. S. Y. Zaginaichenko and Z. A. Matysina, Carbon, 41, No. 7: 1349 (2003); https://doi.org/10.1016/S0008-6223(03)00059-9
  23. V. A. Lavrenko, D. V. Shchur, A. D. Zolotarenko, and A. D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 57, No. 9: 596 (2019); https://doi.org/10.1007/s11106-019-00021-y
  24. Ol. D. Zolotarenko, E. P. Rudakova, I. V. Zagorulko, N. Y. Akhanova, An. D. Zolotarenko, D. V. Schur, M. T. Gabdullin, M. Ualkhanova, T. V. Myronenko, A. D. Zolotarenko, M. V. Chymbai, and O. E. Dubrova, Ukrainian Journal of Physics, 68, No. 1: 57 (2023); https://doi.org/10.15407/ujpe68.1.57
  25. Ol. D. Zolotarenko, An. D. Zolotarenko, E. P. Rudakova, N. Y. Akhanova, M. Ualkhanova, D. V. Schur, M. T. Gabdullin, T. V. Myronenko, A. D. Zolotarenko, M. V. Chymbai, I. V. Zagorulko, and O. O. Havryliuk, Chemistry, Physics and Technology of Surface, 14, No. 2: 191 (2023); https://doi.org/10.15407/hftp14.02.191
  26. Ol. D. Zolotarenko, E. P. Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, M. Ualkhanova, N. A. Gavrylyuk, M. V. Chymbai, Yu. O. Tarasenko, I. V. Zagorulko, and A.?D. Zolotarenko, Metallofiz. Noveishie Tekhnol., 43, No. 10: 1417 (2021); https://doi.org/10.15407/mfint.43.10.1417
  27. Ol. D. Zolotarenko, E. P. Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, M. Ualkhanova, Ì. Sultangazina, N. A. Gavrylyuk, M. V. Chymbai, A. D. Zolotarenko, I. V. Zagorulko, and Yu. O. Tarasenko, Metallofiz. Noveishie Tekhnol., 44, No. 3: 343 (2022); https://doi.org/10.15407/mfint.44.03.0343
  28. Ol. D. Zolotarenko, E. P. Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, M. Ualkhanova, N. A. Gavrylyuk, M. V. Chymbai, T. V. Myronenko, I. V. Zagorulko, A. D. Zolotarenko, and O. O. Havryliuk, Him. Fiz. Tehnol. Poverhni, 13, No. 4: 415 (2022); https://doi.org/10.15407/hftp13.04.415
  29. Ol. D. Zolotarenko, E. P. Rudakova, An. D. Zolotarenko, N. Y. Akhanova, M. Ualkhanova, D. V. Shchur, M. T. Gabdullin, T. V. Myronenko, A. D. Zolotarenko, M. V. Chymbai, and I. V. Zagorulko, Metallofiz. Noveishie Tekhnol., 45, No. 2: 199 (2023); https://doi.org/10.15407/mfint.45.02.019
  30. Fawzeia Khamis, Conference NCRTMSA (Tripoli, Libya: 2023), p. 4; https://uot.edu.ly/publication_item.php?pubid=7609
  31. D. V. Schur, S. Y. Zaginaichenko, A. F. Savenko, V. A. Bogolepov, and N. S. Anikina, Int. J. Hydrogen Energ., 36, No. 1: 1143 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.087
  32. A. F. Savenko, V. A. Bogolepov, K. A. Meleshevich, S. Yu. Zaginaichenko, M. V. Lototsky, V. K. Pishuk, L. O. Teslenko, V. V. Skorokhod, NATO Security Through Science Series A: Chemistry and Biology (Dordrecht: Springer: 2007), p. 365; https://doi.org/10.1007/978-1-4020-5514-0_47
  33. S. Zaginaichenko and T. Nejat Veziroglu, International Journal of Hydrogen Energy, 33, No. 13: 3330 (2008); https://doi.org/10.1016/j.ijhydene.2008.03.064
  34. S. Yu. Zaginaichenko, T. N. Veziroglu, M. V. Lototsky, V. A. Bogolepov, and A. F. Savenko, International Journal of Hydrogen Energy, 41, No. 1: 401 (2016); https://doi.org/10.1016/j.ijhydene.2015.08.087
  35. D. V. Schur, S. Y. Zaginaichenko, and T. N. Veziroglu, International Journal of Hydrogen Energy, 40, No. 6: 2742 (2015); https://doi.org/10.1016/j.ijhydene.2014.12.092
  36. Z. A. Matysina, S. Yu. Zaginaichenko, D. V. Shchur, A. Viziroglu, T. N. Viziroglu, M. T. Gabdullin, N. F. Javadov, An. D. Zolotarenko, and Al. D. Zolotarenko, Hydrogen in Crystals (Kiev: ‘KIM’ Publishing House: 2017).
  37. D. V. Schur, S. Y. Zaginaichenko, A. F. Savenko, V. A. Bogolepov, N. S. Anikina, A. D. Zolotarenko, Z. A. Matysina, T. N. Veziroglu, N. E. Skryabina, NATO Science for Peace and Security Series C: Environmental Security (Dordrecht: Springer: 2011), p. 87; doi:10.1007/978-94-007-0899-0_7
  38. Z. A. Matysina, An. D. Zolonarenko, Al. D. Zolonarenko, N. A. Gavrylyuk, A. Veziroglu, T. N. Veziroglu, A. P. Pomytkin, D. V. Schur, and M. T. Gabdullin, Features of the Interaction of Hydrogen with Metals, Alloys and Compounds (Hydrogen Atoms in Crystalline Solids) (Kiev: ‘KIM’ Publishing House: 2022).
  39. D. V. Schur, M. T. Gabdullin, V. A. Bogolepov, A. Veziroglu, S. Y. Zaginaichenko, A. F. Savenko, and K. A. Meleshevich, International Journal of Hydrogen Energy, 41, No. 3: 1811 (2016); https://doi.org/10.1016/j.ijhydene.2015.10.011
  40. Z. A. Matysina, O. S. Pogorelova, and S. Yu. Zaginaichenko, Journal of Physics and Chemistry of Solids, 56, No. 1: 9 (1995); https://doi.org/10.1016/0022-3697(94)00106-5
  41. Z. A. Matysina and S. Yu. Zaginaichenko, International Journal of Hydrogen Energy, 21, Nos. 11–12: 1085 (1996); https://doi.org/10.1016/S0360-3199(96)00050-X
  42. S. Yu. Zaginaichenko, Z. A. Matysina, I. Smityukh, and V. K. Pishuk, Journal of Alloys and Compounds, 330–332: 70 (2002); https://doi.org/10.1016/S0925-8388(01)01661-9
  43. Z. A. Matysina and S. Y. Zaginaichenko, Russian Physics Journal, 59, No. 2: 177 (2016); https://doi.org/10.1007/s11182-016-0757-0
  44. S. Y. Zaginaichenko, D. A. Zaritskii, Z. A. Matysina, T. N. Veziroglu, and L. I. Kopylova, International Journal of Hydrogen Energy, 40, No. 24: 7644 (2015); https://doi.org/10.1016/j.ijhydene.2015.01.089
  45. Z. A. Matysina and S. Y. Zaginaichenko, Physics of Metals and Metallography, 114, No. 4: 308 (2013); https://doi.org/10.1134/S0031918X13010079
  46. Z. A. Matysina, N. A. Gavrylyuk, M. Kartel, A. Veziroglu, T. N. Veziroglu, A. P. Pomytkin, D. V. Schur, T. S. Ramazanov, M. T. Gabdullin, A. D. Zolotarenko, A. D. Zolotarenko, and N. A. Shvachko, International Journal of Hydrogen Energy, 46, No. 50: 25520 (2021); doi:10.1016/j.ijhydene.2021.05.069
  47. D. V. Shchur, S. Y. Zaginaichenko, A. Veziroglu, T. N. Veziroglu, N. A. Gavrylyuk, A. D. Zolotarenko, M. T. Gabdullin, T. S. Ramazanov, A. D. Zolotarenko, and A. D. Zolotarenko, Russian Physics Journal, 64, No. 1: 89 (2021); doi:10.1007/s11182-021-02304-7
  48. S. Yu. Zaginaichenko, Z. A. Matysina, D. V. Schur, and A. D. Zolotarenko, International Journal of Hydrogen Energy, 37, No. 9: 7565 (2012); https://doi.org/10.1016/j.ijhydene.2012.01.006
  49. Z. A. Matysina, S. Y. Zaginaichenko, D. V. Schur, T. N. Veziroglu, A. Veziroglu, M. T. Gabdullin, Al. D. Zolotarenko, and An. D. Zolotarenko, International Journal of Hydrogen Energy, 43, No. 33: 16092 (2018); https://doi.org/10.1016/j.ijhydene.2018.06.168
  50. Z. A. Matysina, S. Y. Zaginaichenko, D. V. Schur, A. D. Zolotarenko, A. D. Zolotarenko, M. T. Gabdulin, L. I. Kopylova, and T. I. Shaposhnikova, Russian Physics Journal, 61, No. 12: 2244 (2019); https://doi.org/10.1007/s11182-019-01662-7
  51. D. V. Schur, A. Veziroglu, S. Yu. Zaginaychenko, Z. A. Matysina, T. N. Veziroglu, M. T. Gabdullin, T. S. Ramazanov, An. D. Zolonarenko, and Al. D. Zolonarenko, International Journal of Hydrogen Energy, 44, No. 45: 24810 (2019); https://doi.org/10.1016/j.ijhydene.2019.07.205
  52. Z. A. Matysina, S. Yu. Zaginaichenko, D. V. Schur, Al. D. Zolotarenko, An. D. Zolotarenko, and M.T. Gabdulin, Russian Physics Journal, 61, No. 2: 253 (2018); https://doi.org/10.1007/s11182-018-1395-5
  53. Z. A. Matysinaa, An. D. Zolotarenko, Al. D. Zolotarenko, M. T. Kartel, A. Veziroglu, T. N. Veziroglu, N. A. Gavrylyuk, D. V. Schur, M. T. Gabdullin, N. E. Akhanova, T. S. Ramazanov, M. Ualkhanova, and N. A. Shvachkoa, International Journal of Hydrogen Energy, 48, No. 6: 2271; https://doi.org/10.1016/j.ijhydene.2022.09.225
  54. Z. A. Matysina, An. D. Zolotarenko, Ol. D. Zolotarenko, T. V. Myronenko, D. V. Schur, E. P. Rudakova, M. V. Chymbai, A. D. Zolotarenko, I. V. Zagorulko, and O. O. Havryliuk, Chemistry, Physics and Technology of Surface, 14, No. 2: 210 (2023); doi:10.15407/hftp14.02.210
  55. Z. A. Matysina and D. V. Shchur, Russian Physics Journal, 44, No. 11: 1237 (2001); https://doi.org/10.1023/A:1015318110874
  56. V. I. Trefilov, D. V. Shchur, V. K. Pishuk, S. Yu. Zaginaichenko, A. V. Choba, and N. R. Nagornaya, Renewable Energy, 16, Nos. 1–4: 757 (1999); https://doi.org/10.1016/S0960-1481(98)00273-0
  57. Yu. M. Lytvynenko and D. V. Shchur, Renewable Energy, 16, Nos. 1–4: 753 (1999); https://doi.org/10.1016/S0960-1481(98)00272-9
  58. D. V. Schur, A. A. Lyashenko, V. M. Adejev, V. B. Voitovich, and S. Yu. Zaginaichenko, International Journal of Hydrogen Energy, 20, No. 5: 405 (1995); https://doi.org/10.1016/0360-3199(94)00077-D
  59. D. V. Schur, V. A. Lavrenko, V. M. Adejev, and I. E. Kirjakova, International Journal of Hydrogen Energy, 19, No. 3: 265 (1994); https://doi.org/10.1016/0360-3199(94)90096-5
  60. S. Y. Zaginaichenko, Z. A. Matysina, D. V. Schur, L. O. Teslenko, and A. Veziroglu, International Journal of Hydrogen Energy, 36, No. 1: 1152 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.088
  61. S. A. Tikhotskii, I. V. Fokin, and D. V. Schur, Physics of the Solid Earth, 47, No. 4: 327 (2011); https://doi.org/10.1134/S1069351311030062
  62. A. D. Zolotarenko, A. D. Zolotarenko, A. Veziroglu, T. N. Veziroglu, N. A. Shvachko, A. P. Pomytkin, D. V. Schur, N. A. Gavrylyuk, T. S. Ramazanov, N. Y. Akhanova, and M. T. Gabdullin, International Journal of Hydrogen Energy, 47, No. 11: 7310 (2022); https://doi.org/10.1016/j.ijhydene.2021.03.065
  63. An. D. Zolotarenko, Al. D. Zolotarenko, A. Veziroglu, T. N. Veziroglu, N. A. Shvachko, A. P. Pomytkin, N. A. Gavrylyuk, D. V. Schur, T. S. Ramazanov, and M. T. Gabdullin, International Journal of Hydrogen Energy, 47, No. 11: 7281 (2021); https://doi.org/10.1016/j.ijhydene.2021.03.025
  64. G. Busch, Helv. Phys. Acta, 11: 269 (1938).
  65. J. Habl?tzel, Helv. Phys. Acta, 11: 489 (1938).
  66. W. P. Mason, Phys. Rev., 55: 775 (1939).
  67. W. Bantle, Helv. Phys. Acta, 15: 373 (1942).
  68. A. Arx and W. Bantle, Helv. Phys. Acta, 16: 211 (1943).
  69. C. C. Stephenson and J. G. Hooly, Am. Chem. Soc., 66: 1397 (1944).
  70. A. Von Arx and W. Bantle, Helv. Phys. Acta, 17: 298 (1944).
  71. W. P. Mason, Phys. Rev., 69: 173 (1946).
  72. B. Zwicker, Helv. Phys. Acta, 19: 523 (1946).
  73. M. Beck and H. Granicher, Helv. Phys. Acta, 23: 522 (1950).
  74. H. Baumgartner, Helv. Phys. Acta, 23: 651 (1950).
  75. H. Baumgartner, Helv. Phys. Acta, 24: 326 (1951).
  76. Y. Suemune, J. Phys. Soc. Japan, 21, Nos. 3–4: 802 (1966).
  77. Y. Suemune, J. Phys. Soc. Japan, 22, No. 3: 735 (1967).
  78. B. A. Strukov, M. Amin, and V. A. Kopzik, phys. stat. sol., 27, No. 2: 741 (1968).
  79. K. V. Ramanaiah and K. B. P.Varma, Bullettin of Matterials Science, 5, No. 2: 147 (1983).
  80. B. A. Strukov and A. A. Belov, Izvestiya AN SSSR. Ser. Fiz., 56, No. 10: 40 (1992) (in Russian).
  81. L. N. Korotkov, S. A. Kravchenko, S.A. Gridnev, R. M. Fedosyuk, Izvestiya AN SSSR. Ser. Fiz., 62, No. 8: 1598 (1998) (in Russian).
  82. W. K?nzig, Ferroelectrics and Antiferroelectrics (New York–London: Academic Press: 1964).
  83. G. A. Smolensky, V. A. Bokov, V. A. Isupov, N. N. Krainik, R. E. Pasynkov, and M. S. Schur, Ferroelectrics and Antiferroelectrics (Leningrad: Nauka: 1971) (in Russian).
  84. G. A. Smolensky, Physics of Ferroelectric Phenomena (Leningrad: Nauka: 1985) (in Russian).
  85. V. M. Rudyak, Physical Properties of Ferroelectric Crystals (Kalinin: KGU: 1989).
  86. Z. A. Matysina, Investigation of the Paraelectric–Ferroelectric Phase Transition in KDP Crystals, Izvestiya VUZov. Fizika (VINITI, Deposit Manuscript No. 1766-VO: 2000), 9: 23–112 (in Russian).
  87. Z. A. Matysina, M. Modlinsky, and V. Chumak, Abstr. 4th Int. Symp. ‘New Materials for Electrochemical Systems’ (Montreal, Canada: 2001), p. 11.
  88. S. Yu. Zaginaichenko, Z. A. Matysina, D. V. Schur, and V. A. Chumak, Proc. VII Int. Conf. ‘ICHMS 2001’ (Alushta: Ukraine: 2001), p. 306; http://www.aheu.com.ua/ichms01.html
  89. J. West, Krist., 74: 306 (1930).
  90. A. R. Ubbelohde, Proc. Roy. Soc., 188A, No. 25: 358 (1947).
  91. B. C. Frazer and R. Pepinsky, Acta Cryst., 6: 273 (1953).
  92. H. M. Barkla and D. M. Finlayson, Phil. Mag., 44, No. 7: 109 (1953).
  93. G. E. Bacon and R. S. Pease, Proc. Roy. Soc., 220A: 397 (1953).
  94. S. W. Peterson and H. A. Levy, J. Chem. Phys., 21: 2084 (1953).
  95. H. A. Levy, S. W. Peterson, and S. H. Simonsen, Phys. Rev., 93: 1120 (1954).
  96. G. E. Bacon and R. S. Pease, Proc. Roy. Soc., 230A: 359 (1955).
  97. A. A. Smirnov, Molecular-Kinetic Theory of Metals (Moskva: Nauka: 1966) (in Russian).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement