Download the full
version of the article (in PDF format)
O.M. BORDUN, I.Yo. KUKHARSKYY, M.V. PROTSAK, I.I. MEDVID,
I.M. KOFLIUK, Zh.Ya. TSAPOVSKA, and D.S. LEONOV
Synthesis and Structure of Thin GaN Films by
Radio-Frequency Sputtering
287–293 (2024)
PACS numbers: 61.05.cp, 61.72.Cc, 61.72.Mm, 68.35.Ct, 68.55.J-, 81.07.Bc, 81.15.Cd
The structure and features of thin GaN films deposited by means of the radio-frequency
(RF) ion-plasma sputtering are investigated. As shown, thin GaN films are formed from nanocrystallites with
average dimensions of 14.3 nm and rather low crystal-lattice stresses. The influence of both the working-gas
N2 pressure and the substrate temperature on the film deposition rate is investigated
KEY WORDS: gallium nitride, thin films, RF sputtering, structure
DOI: https://doi.org/10.15407/nnn.22.02.287
REFERENCES
- C. M. Furqan, Jacob Y. L. Ho, H. S. Kwok, Surfaces and Interfaces, 26: 101364 (2021); https://doi.org/10.1016/j.surfin.2021.101364
- L. Srinivasan, C. Jadaud, F. Silva, J.-Ch. Vanel, J.-L. Maurice, E. Johnson, P. Roca i Cabarrocas, and K. Ouaras, J. Vac. Sci. Technol. A, 41: 053407 (2023); https://doi.org/10.1116/6.0002718
- F. Roccaforte and M. Leszczynski, Nitride Semiconductor Technology. Power Electronics and Optoelectronic Devices (Wiley–VCH Verlag GmbH & Co. KGaA: 2020).
- M. Higashiwaki, AAPPS Bull., 32: 3 (2022); https://doi.org/10.1007/s43673-021-00033-0
- O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, and I. I. Medvid, J. Appl. Spectrosc., 86, No. 6: 1010 (2020); https://doi.org/10.1007/s10812-020-00932-4
- O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, and I. I. Medvid, J. Appl. Spectrosc., 84, No. 1: 46 (2017); https://doi.org/10.1007/s10812-017-0425-3
- A. Zhong, L. Wang, Y. Tang, Yo. Yang, J. Wang, H. Zhu, Zh. Wu, W. Tang, and B. Li, Chin. Phys. B, 32: 076102 (2023); https://doi.org/10.1088/1674-1056/accb8a
- M. Monish, Sh. Mohan, D. S. Sutar, and S. S. Major, Semicond. Sci. Technol., 35, No. 4: 045011 (2020); https://doi.org/10.1088/1361-6641/ab73ec
- V. Bondar, I. Kucharsky, B. Simkiv, L. Akselrud, V. Davydov, Yu. Dubov, and S. Popovich, phys. stat. sol. (a), 176, No. 1: 329 (1999); https://doi.org/10.1002/(SICI)1521-396X(199911)176:1<329::AID-PSSA329>3.0.CO;2-E
- Kiyotaka Wasa, Makoto Kitabatake, and Hideaki Adachi, Thin Film Materials Technology: Sputtering of Compound Materials (William Andrew: 2004).
- R. Swanepoel, J. Phys. E: Sci. Instrum., 16, No. 12: 1214 (1983); https://doi.org/1010.1088/0022-3735/16/12/023
- A. P. Caricato, A. Fazzi, and G. Leggieri, Applied Surface Science, 248: 440 (2005); https://doi.org/10.1016/j.apsusc.2005.03.06
- T. Maruyama and H. Miyake, J. Vac. Sci. Technol. A, 24, No. 4: 1096 (2006); https://doi.org/10.1116/1.2208988
- R. S. de Oliveira, H. A. Folli, C. Stegemann, I. M. Horta, B. S. Damasceno, W. Miyakawa, A. L. J. Pereira, M. Massi, A. S. da Silva Sobrinho, and D. M. G. Leite, Materials Research., 25: e20210432 (2022); https://doi.org/10.1590/1980-5373-MR-2021-0432
- O. M. Bordun, I. O. Bordun, and I. Yo. Kukharskyy, J. Appl. Spectrosc., 82, No. 3: 390 (2015); https://doi.org/10.1007/s10812-015-0118-8
- O. M. Bordun and L. M. Lymarenko, Ukr. J. of Physics, 42, Nos. 11–12: 1390 (1997) (in Ukrainian).
- S. L. Morelhao, Computer Simulation Tools for X-Ray Analysis. Scattering and Diffraction Methods (Cham, Switzerland: Springer International Publishing: 2016).
- U. Welzel, J. Ligot, P. Lamparter, A. C. Vermeulen, and E. J. Mittemeijer, J. Appl. Cryst., 38: 1 (2005); https://doi.org/10.1107/S0021889804029516
- O. M. Bordun, I. O. Bordun, I. M. Kofliuk, I. Yo. Kukharskyy, I. I. Medvid, Î. Ya. Mylyo, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 17, Iss. 4: 711 (2019); https://doi.org/10.15407/nnn.17.04.711
|