Download the full
version of the article (in PDF format)
D.O. REZNIK, D.L. PALAGECHA, K.V. KRYVENKO, S.G. PONOMARCHUK,
Ya.V. ZAULICHNYI, O.V. STEPANOV, D.S. LEONOV, and Yu.I. BOGOMOL
Ceramic Composite on the Basis of Boron Carbide
Directed Reinforced on Mesolevels with High-Entropy Diboride of Transition Metals
249–260 (2024)
PACS numbers: 61.72.Ff, 62.20.mt, 62.20.Qp, 62.23.Pq, 68.37.Hk, 81.05.Je, 81.05.Ni
Directionally solidified B4C/(V0.2Ta0.2Cr0.2Mo0.2W0.2)B2-alloy eutectic ceramics are
prepared by the floating zone method based on the crucibleless zone melting of compacted powders using B4C
and transition metal diboride (VB2, TaB2, CrB2, MoB2, WB2) powders as initial materials. The microstructure
of as-prepared composites consists of a B4C matrix uniformly reinforced on mesolevel by means of the
single-phase high-entropy (V0.2Ta0.2Cr0.2Mo0.2W0.2)B2 diboride. The XRD analysis of the composites confirms
the presence of the following phases in their compositions: B4C and (V0.2Ta0.2Cr0.2Mo0.2W0.2)B2. The effect
of the solidification rate on the structural and micromechanical characteristics of the
B4C/(V0.2Ta0.2Cr0.2Mo0.2W0.2)B2 ceramics is revealed. As found, an increase in the solidification rate leads
to a decrease in the size of the reinforcing phase and an increase in hardness and fracture toughness from
25.26 to 32.48 GPa and from 3.64 to 5.84 MPa•m1/2, respectively
KEY WORDS: boron carbide, high-entropy borides, directionally solidified eutectic
composites, Vickers hardness, fracture toughness
DOI: https://doi.org/10.15407/nnn.22.02.249
REFERENCES
- F. Thevenot, J. Eur. Ceram. Soc., 6: 205 (1990); http://dx.doi.org/10.1016/0955-2219(90)90048-K
- A. K. Suri, C. Subramanian, J. K. Sonber, and T. S. R. C. Murthy, Int. Mater. Rev., 55: 4 (2010); https://doi.org/10.1179/095066009X12506721665211
- R. L. Ashbrook, J. Am. Ceram. Soc., 60: 428 (1977); https://doi.org/10.1016/j.jeurceramsoc.2023.08.028
- Wei-Ting Chen, Ryan M. White, Takashi Goto, and Elizabeth C. Dickey, J. Am. Ceram. Soc., 99: 1837 (2016); https://doi.org/10.1111/jace.14287
- Y. Zhong, W. Xiang, L. He, J. Li, J. Hao, and Z. Tian, J. Eur. Ceram. Soc., 41: 7119 (2021); https://doi.org/10.1016/j.jeurceramsoc.2021.07.049
- D. Demirskyi and O. Vasylkiv, Materials Science and Engineering, 697: 71 (2017); https://doi.org/10.1016/j.msea.2017.04.093
- M. Upatov, J. Vleugels, Y. Koval, V. Bolbut, and I. Bogomol, J. Eur. Ceram. Soc., 41: 1189 (2021); https://doi.org/10.1016/j.jeurceramsoc.2020.09.049
- J. Gild, Y. Zhang, T. Harrington, and S. Jiang, Sci. Rep., 6: 37946 (2016); https://doi.org/10.1038/srep37946
- Y. Zhang, T. T. Zuo, Z. Tang, and M. C. Gao, Prog. Mater. Sci., 61: 1 (2014); https://doi.org/10.1016/j.pmatsci.2013.10.001
- M. H. Tsai and J. W. Yeh, Mater. Res. Lett., 2: 107 (2014); https://doi.org/10.1080/21663831.2014.912690
- J. Gild, K. Kaufmann, K. Vecchio, and J. Luo, Scr. Mater., 170: 106 (2019); https://doi.org/10.1016/j.scriptamat.2019.05.039
- M. Qin, J. Gild, C. Hu, H. Wang, and M. S. B. Hoque, J. Eur. Ceram. Soc., 40: 5037 (2020); https://doi.org/10.1016/j.jeurceramsoc.2020.05.040
- E. R. Ferkhatly, A. V. Kovalska, and Y. I. Bogomol, J. Superhard Mater., 44: 111 (2022); https://doi.org/10.3103/S1063457622020046
- L. Feng, W. G. Fahrenholtz, and G. E. Hilmas, J. Eur. Ceram. Soc., 40: 3815 (2020); https://doi.org/10.1016/j.jeurceramsoc.2020.03.065
- Iurii Bogomol and, Petro Loboda, MAX phases and ultra-high temperature ceramics for extreme environments (Eds. J. Low and Y. Sakka) (IGI Global: 2013), p. 303; https://doi.org/10.4018/978-1-4666-4066-5.ch010
- Iurii Bogomol, Elmira Ferkhatly, Serhii Ponomarchuk, Yaroslav Zaulychnyi, Myroslav Karpets, and Ievgen Solodkyi, J. Eur. Ceram. Soc., 44: 51 (2024); https://doi.org/10.1016/j.jeurceramsoc.2023.08.028
- Suzana Filipovic, Nina Obradovic, Greg E. Hilmas, William G. Fahrenholtz, Donald W. Brenner, Jon-Paul Maria, Douglas E. Wolfe, Eva Zurek, Xiomara Campilongo, and Stefano Curtarolo, J. Am. Ceram. Soc., 1 (2024); https://doi.org/10.1111/jace.19795
- Yan Zhang, Shi-Kuan Sun, Wei-Ming Guo, Wei Zhang, Liang Xu, Jin-Hao Yuan, Di-Kai Guan, Da-Wei Wang, Yang You, and Hua-Tay Lin, J. Eur. Ceram. Soc., 41: 1015 (2021); https://doi.org/10.1016/j.jeurceramsoc.2020.08.071
- K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett., 1: 13 (1982); https://doi.org/10.1007/BF00724706
- G. Yao, W.-Y. Wang, P.-X. Li, Ren Ke, J.-Q. Lu, X.-Y. Gao, D.-Y. Lin, Jun Wang, Y.-G. Wang, H.-F. Song, Z.-K. Liu, and J.-Sh. Li, Rare Met., 42: 614 (2023); https://doi.org/10.1007/s12598-022-02152-5
- D. Wang, K. Xu, Q. Li, X. Ding, and S. Ran, JOM, 74: 4129 (2022); https://doi.org/10.1007/s11837-022-05377-y
- L. Xu, K. Huang, W. Guo, Y. Liu, and Y. You, Ceramics International, 49: 19556 (2023); https://doi.org/10.1016/j.ceramint.2023.03.047
- P. B. Oliete, J. I. Pe?a, A. Larrea, V. M. Orera, and J. LLorca, Adv. Mater., 19: 2313 (2007); https://doi.org/10.1002/adma.200602379
- F. Dai, Y. Sun, B. Wen, H. Xiang, and Y. Zhou, J. Eur. Ceram. Soc., 72: 8 (2021); https://doi.org/10.1016/j.jmst.2020.07.014
- W. S. Rubink, V. Ageh, H. Lide, N. A. Ley, M. L. Young, D. T. Casem, E. J. Faierson, and T. W. Scharf, J. Eur. Ceram. Soc., 41: 3321 (2021); https://doi.org/10.1016/j.jeurceramsoc.2021.01.044
|