Issues

 / 

2024

 / 

vol. 22 / 

issue 2

 



Download the full version of the article (in PDF format)

D.O. REZNIK, D.L. PALAGECHA, K.V. KRYVENKO, S.G. PONOMARCHUK, Ya.V. ZAULICHNYI, O.V. STEPANOV, D.S. LEONOV, and Yu.I. BOGOMOL

Ceramic Composite on the Basis of Boron Carbide Directed Reinforced on Mesolevels with High-Entropy Diboride of Transition Metals
249–260 (2024)

PACS numbers: 61.72.Ff, 62.20.mt, 62.20.Qp, 62.23.Pq, 68.37.Hk, 81.05.Je, 81.05.Ni

Directionally solidified B4C/(V0.2Ta0.2Cr0.2Mo0.2W0.2)B2-alloy eutectic ceramics are prepared by the floating zone method based on the crucibleless zone melting of compacted powders using B4C and transition metal diboride (VB2, TaB2, CrB2, MoB2, WB2) powders as initial materials. The microstructure of as-prepared composites consists of a B4C matrix uniformly reinforced on mesolevel by means of the single-phase high-entropy (V0.2Ta0.2Cr0.2Mo0.2W0.2)B2 diboride. The XRD analysis of the composites confirms the presence of the following phases in their compositions: B4C and (V0.2Ta0.2Cr0.2Mo0.2W0.2)B2. The effect of the solidification rate on the structural and micromechanical characteristics of the B4C/(V0.2Ta0.2Cr0.2Mo0.2W0.2)B2 ceramics is revealed. As found, an increase in the solidification rate leads to a decrease in the size of the reinforcing phase and an increase in hardness and fracture toughness from 25.26 to 32.48 GPa and from 3.64 to 5.84 MPa•m1/2, respectively

KEY WORDS: boron carbide, high-entropy borides, directionally solidified eutectic composites, Vickers hardness, fracture toughness

DOI:  https://doi.org/10.15407/nnn.22.02.249

REFERENCES
  1. F. Thevenot, J. Eur. Ceram. Soc., 6: 205 (1990); http://dx.doi.org/10.1016/0955-2219(90)90048-K
  2. A. K. Suri, C. Subramanian, J. K. Sonber, and T. S. R. C. Murthy, Int. Mater. Rev., 55: 4 (2010); https://doi.org/10.1179/095066009X12506721665211
  3. R. L. Ashbrook, J. Am. Ceram. Soc., 60: 428 (1977); https://doi.org/10.1016/j.jeurceramsoc.2023.08.028
  4. Wei-Ting Chen, Ryan M. White, Takashi Goto, and Elizabeth C. Dickey, J. Am. Ceram. Soc., 99: 1837 (2016); https://doi.org/10.1111/jace.14287
  5. Y. Zhong, W. Xiang, L. He, J. Li, J. Hao, and Z. Tian, J. Eur. Ceram. Soc., 41: 7119 (2021); https://doi.org/10.1016/j.jeurceramsoc.2021.07.049
  6. D. Demirskyi and O. Vasylkiv, Materials Science and Engineering, 697: 71 (2017); https://doi.org/10.1016/j.msea.2017.04.093
  7. M. Upatov, J. Vleugels, Y. Koval, V. Bolbut, and I. Bogomol, J. Eur. Ceram. Soc., 41: 1189 (2021); https://doi.org/10.1016/j.jeurceramsoc.2020.09.049
  8. J. Gild, Y. Zhang, T. Harrington, and S. Jiang, Sci. Rep., 6: 37946 (2016); https://doi.org/10.1038/srep37946
  9. Y. Zhang, T. T. Zuo, Z. Tang, and M. C. Gao, Prog. Mater. Sci., 61: 1 (2014); https://doi.org/10.1016/j.pmatsci.2013.10.001
  10. M. H. Tsai and J. W. Yeh, Mater. Res. Lett., 2: 107 (2014); https://doi.org/10.1080/21663831.2014.912690
  11. J. Gild, K. Kaufmann, K. Vecchio, and J. Luo, Scr. Mater., 170: 106 (2019); https://doi.org/10.1016/j.scriptamat.2019.05.039
  12. M. Qin, J. Gild, C. Hu, H. Wang, and M. S. B. Hoque, J. Eur. Ceram. Soc., 40: 5037 (2020); https://doi.org/10.1016/j.jeurceramsoc.2020.05.040
  13. E. R. Ferkhatly, A. V. Kovalska, and Y. I. Bogomol, J. Superhard Mater., 44: 111 (2022); https://doi.org/10.3103/S1063457622020046
  14. L. Feng, W. G. Fahrenholtz, and G. E. Hilmas, J. Eur. Ceram. Soc., 40: 3815 (2020); https://doi.org/10.1016/j.jeurceramsoc.2020.03.065
  15. Iurii Bogomol and, Petro Loboda, MAX phases and ultra-high temperature ceramics for extreme environments (Eds. J. Low and Y. Sakka) (IGI Global: 2013), p. 303; https://doi.org/10.4018/978-1-4666-4066-5.ch010
  16. Iurii Bogomol, Elmira Ferkhatly, Serhii Ponomarchuk, Yaroslav Zaulychnyi, Myroslav Karpets, and Ievgen Solodkyi, J. Eur. Ceram. Soc., 44: 51 (2024); https://doi.org/10.1016/j.jeurceramsoc.2023.08.028
  17. Suzana Filipovic, Nina Obradovic, Greg E. Hilmas, William G. Fahrenholtz, Donald W. Brenner, Jon-Paul Maria, Douglas E. Wolfe, Eva Zurek, Xiomara Campilongo, and Stefano Curtarolo, J. Am. Ceram. Soc., 1 (2024); https://doi.org/10.1111/jace.19795
  18. Yan Zhang, Shi-Kuan Sun, Wei-Ming Guo, Wei Zhang, Liang Xu, Jin-Hao Yuan, Di-Kai Guan, Da-Wei Wang, Yang You, and Hua-Tay Lin, J. Eur. Ceram. Soc., 41: 1015 (2021); https://doi.org/10.1016/j.jeurceramsoc.2020.08.071
  19. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett., 1: 13 (1982); https://doi.org/10.1007/BF00724706
  20. G. Yao, W.-Y. Wang, P.-X. Li, Ren Ke, J.-Q. Lu, X.-Y. Gao, D.-Y. Lin, Jun Wang, Y.-G. Wang, H.-F. Song, Z.-K. Liu, and J.-Sh. Li, Rare Met., 42: 614 (2023); https://doi.org/10.1007/s12598-022-02152-5
  21. D. Wang, K. Xu, Q. Li, X. Ding, and S. Ran, JOM, 74: 4129 (2022); https://doi.org/10.1007/s11837-022-05377-y
  22. L. Xu, K. Huang, W. Guo, Y. Liu, and Y. You, Ceramics International, 49: 19556 (2023); https://doi.org/10.1016/j.ceramint.2023.03.047
  23. P. B. Oliete, J. I. Pe?a, A. Larrea, V. M. Orera, and J. LLorca, Adv. Mater., 19: 2313 (2007); https://doi.org/10.1002/adma.200602379
  24. F. Dai, Y. Sun, B. Wen, H. Xiang, and Y. Zhou, J. Eur. Ceram. Soc., 72: 8 (2021); https://doi.org/10.1016/j.jmst.2020.07.014
  25. W. S. Rubink, V. Ageh, H. Lide, N. A. Ley, M. L. Young, D. T. Casem, E. J. Faierson, and T. W. Scharf, J. Eur. Ceram. Soc., 41: 3321 (2021); https://doi.org/10.1016/j.jeurceramsoc.2021.01.044
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement