Download the full
version of the article (in PDF format)
N.V. KRISHNA PRASAD and N. MADHAVI
MXenes-Based Supercapacitors: A Review on Energy
Storage Devices
133–146 (2024)
PACS numbers: 62.23.Pq, 77.84.Lf, 81.05.Je, 81.05.U-, 82.45.Yz, 82.45.Uv, 84.60.Ve
Energy storage and energy-storage devices have been a buzzword for long time as it is one
of the essential needs in human life. These devices include mechanical systems, thermal systems, and
batteries. These systems embedded with software can monitor the charging and discharging phenomena of
energy. In this context, the role of rechargeable batteries needs to be reviewed. Even though novel types of
rechargeable batteries are being continuously developed for storage of electricity, more attention and
research towards supercapacitors is on the way. Huge number of researchers around the globe is involved in
developing supercapacitors with improved performance making them more and more useful. The main aim is to
improve their efficiency, energy density, operating voltage, miniaturization, optimization, economy, and
environmental acceptance. For the last few years, lightweight and carbon-based novel wearable
supercapacitors are developed. High durability, eco-friendliness, being non-volatile and electrostatic
mechanism of supercapacitors make them advantageous than conventional batteries. In this regard, advances in
microelectronics demand microsupercapacitors (MSCs). The selection of electrode in microsupercapacitor plays
significant role in the fabrication. In this selection, MXenes as a family of 2D material play a vital role.
Very high conductivity and high capacity of charge storage makes MXenes as one of the potential materials
for electrodes in microsupercapacitors. This prompts us to review the role of MXenes in
microsupercapacitors. This article reviews the recent advances of MXenes-based MSCs with emphasis on their
fabrication techniques
KEY WORDS: 2D MXenes, microsupercapacitors, energy storage, E-textiles,
health monitoring
DOI: https://doi.org/10.15407/nnn.22.01.133
REFERENCES
- B. E. Conway, Electrochemical Supercapacitors (Kluwer Academic/Plenum Publishers: 1999); https://doi.org/10.1007/978-1-4757-3058-6
- Z. Stevic, I. Radovanovic, M. Rajcic-Vujasinovic, S. Bugarinovic, and V. Grekulovic, ChemInform, 45, No. 27: 234 (2014); https://doi.org/10.1002/chin.201427234
- Thibeorchews Prasankumar, Jemini Jose, Sujin Jose, and Sreeja P. Balakrishnan, Pseudocapacitors (IntechOpen: 2021); doi:10.5772/intechopen.98600
- Shanshan Xiong, Shuyao Jiang, Juan Wang, Hongjun Lin, Mengxian Lin, Shuting Weng, Shuai Liu, Yang Jiao, Yanchao Xu, and Jianrong Chen, Electrochimica Acta, 340: 135956 (2020); https://doi.org/10.1016/j.electacta.2020.135956
- Xuli Chen, Rajib Paul, and Liming Dai, National Science Review, 4: 453 (2017); doi:10.1093/nsr/nwx009
- K. Adib, S. Esmail, M. Ghalkhani, and H. R. Naderi, Ceramics International, 47, No. 10: 14075 (2021); http://doi.10.1016/j.ceramint.2021.01.277
- J. Park, J. Lee, S. Kim, and J. Hwang, Materials, 14, No. 10: 2597 (2021); https://doi.org/10.3390/ma14102597
- D. Tie, S. Huang, J. Wang, Y. Zhao, J. Ma, and J. Zhang, Energy Storage Materials, 21: 22 (2019); https://doi.org/10.1016/j.ensm.2018.12.018
- W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, and J. Liu, Advanced Science, 4, No. 7: 1600539 (2017); https://doi.org/10.1002/advs.201600539
- H. Shifei, X. Zhu, S. Sarkar, and Y. Zhao, APL Materials, 7: 100901 (2019); https://doi.org/10.1063/1.5116146
- R. Banavath, S. S. Nemala, S.-H. Kim, S. Bohm, M. Z. Ansari, and D. Mohapatra, Flat. Chem., 33: 100373 (2022); http://doi.org/10.1016/j.flatc.2022.100373
- A. G. Olabi, M. A. Abdelkareem, T. Wilberforce, and E. T. Sayed, Renewable and Sustainable Energy Reviews, 135: 110026 (2021); http://doi.org.10.1016/j.rser.2020.110026
- Z. Stevi? and M. Raj?i?-Vujasinovi?, Journal of Power Sources, 160: 1511 (2006); http://doi.org.10.1016/j.jpowsour.2006
- M. Rajcic Vujasinovic, Z. Stevic, and S. Bugarinovic, Open Journal of Metal., 2, No. 3: 60 (2012); http://doi.org/10.4236/ojmetal.2012.23009
- C. Yang, J. Liang, L. Xue, L. Yue, Q. Liu, and S. Lu, Chemical Communication, 57: 2343 (2021); https://doi.org/10.1039/D0CC07970G
- J. Wang, F. Li, F. Zhu, and O. G. Schmidt, Small Methods, 3, No. 8: 1800367 (2019); https://doi.org/10.1002/smtd.201800367
- F. Bu, W. Zhou, Y. Xu, Y. Du, C. Guan, and W. Huang, Npj Flex Electron., 4, No. 31: 1 (2020); https://doi.org/10.1038/s41528-020-00093-6
- Qiu Jiang, Yongjiu Lei, Hanfeng Liang, Kai Xi, Chuan Xia, and Husam N. Alshareef, Energy Storage Mater., 27: 78 (2020); https://doi.org/10.1016/j.ensm.2020.01.018
- Panpan Zhang, Faxing Wang, Minghao Yu, Xiaodong Zhuang, and Xinliang Feng, Chem. Soc. Rev., 47, No. 19: 7426 (2018); https://doi.org/10.1039/C8CS00561C
- David Pech, Magali Brunet, Pierre-Louis Taberna, Patrice Simon, Norbert Fabre, Fabien Mesnilgrente, V?ronique Con?d?ra, and Hugo Durou, J. Power Sources, 195, No. 4: 1266 (2010); http://dx.doi.org/10.1016/j.jpowsour.2009.08.085
- John Chmiola, Celine Largeot, Pierre-Louis Taberna, Patrice Simon, and Yury Gogotsi, Science, 328, No. 5977: 480 (2010); doi:10.1126/science.1184126
- David Pech, Magali Brunet, Hugo Durou, Peihua Huang, Vadym Mochalin, Yury Gogotsi, Pierre-Louis Taberna, and Patrice Simon, Nat. Nanotechnol., 5, No. 9: 651 (2010); doi:10.1038/NNANO.2010.162
- Jiaxing Liang, Anjon Kumar Mondal, Da-Wei Wang, and Francesca Iacop, Adv. Mater. Technol., 4, No. 1: 1800200 (2019); https://doi.org/10.1002/admt.201800200
- Jian Lin, Chenguang Zhang, Zheng Yan, Yu Zhu, Zhiwei Peng, Robert H. Hauge, Douglas Natelson, and James M. Tour, Nano Lett., 13, No. 1: 72 (2013); https://doi.org/10.1021/nl3034976
- Narendra Kurra, Qiu Jiang, Pranati Nayak, and Husam N. Alshareef, Nano Today, 24: 81 (2019); https://doi.org/10.1016/j.nantod.2018.12.003
- Wenping Si, Chenglin Yan, Yao Chen, Steffen Oswald, Luyang Han, and Oliver G. Schmidt, Energy Environ. Sci., 6, No. 11: 3218 (2013); https://doi.org/10.1039/C3EE41286E
- Torsten Brezesinski, John Wang, Sarah H. Tolbert, and Bruce Dunn, Nat. Mater., 9. No. 2: 146 (2010); https://doi.org/10.1038/nmat2612
- Jinhong Du and Hui-Ming Cheng, Macromol. Chem. Phys., 213: 1060 (2012); https://doi.org/10.1002/macp.201200029
- Narendra Kurra, Chuan Xia, M. N. Hedhili, and H. N. Alshareef, Chem. Commun., 51, No. 52: 10494 (2015); https://doi.org/10.1039/C5CC03220B
- Michael Naguib, Murat Kurtoglu, Volker Presser, Jun Lu, Junjie Niu, Min Heon, Lars Hultman, Yury Gogotsi, and Michel W. Barsoum, Adv. Mater., 23, No. 37: 4248 (2011); https://doi.org/10.1002/adma.201102306
- Aditya Sharma and Chandra Sekhar Rout, Two-Dimensional MXene Based Materials for Micro-Supercapacitors (IntechOpen: 2021); doi:10.5772/intechopen.97650
- Johnson Michael, Zhang Qifeng, and Wang Danling, Nanomaterials Nanotechnology, 9: 1 (2019); https://doi.org/10.1177/1847980418824470
- Michael Naguib, Vadym N. Mochalin, Michel W. Barsoum, and Yury Gogotsi, Adv. Mater., 26, No. 7: 992 (2014); https://doi.org/10.1002/adma.201304138
- Michael Naguib, Olha Mashtalir, Joshua Carle, Volker Presser, Jun Lu, Lars Hultman, Yury Gogotsi, and Michel W. Barsoum, ACS Nano, 6, No. 2: 1322 (2012); https://doi.org/10.1021/nn204153h
- Chuanfang (John) Zhang, Babak Anasori, Andr?s Seral-Ascaso, Sang-Hoon Park, Niall McEvoy, Aleksey Shmeliov, Georg S. Duesberg, Jonathan N. Coleman, Yury Gogotsi, and Valeria Nicolos, Adv. Mater., 29, No. 36: 1702678 (2017); https://doi.org/10.1002/adma.201702678
- Faisal Shahzad, Mohamed Alhabeb, Christine B. Hatter, Babak Anasori, Soon Man Hong, Chong Min Koo, and Yury Gogotsi, Science, 353, No. 6304: 1137 (2016); doi:10.1126/science.aag2421
- Mohammad Khazaei, Masao Arai, Taizo Sasaki, Chan-Yeup Chung, Natarajan S. Venkataramanan, Mehdi Estili, Yoshio Sakka, and Yoshiyuki Kawazoe, Adv. Funct. Mater., 23, No. 17: 2185 (2013); https://doi.org/10.1002/adfm.201202502
- Mohammad Khazaei, Masao Arai, Taizo Sasaki, Mehdi Estilic, and Yoshio Sakka, Phys. Chem. Chem. Phys., 16, No. 17: 7841 (2014); https://doi.org/10.1039/C4CP00467A
- I. R. Shein and A. L. Ivanovskii, Comput. Mater. Sci., 65: 104 (2012); https://doi.org/10.1016/j.commatsci.2012.07.011
- Guoying Gao, Guangqian Ding, Jie Li, Kailun Yao, Menghao Wua, and Meichun Qian, Nanoscale, 8, No. 16: 8986 (2016); https://doi.org/10.1039/C6NR01333C
- Mohammad Khazaei, Ahmad Ranjbar, Mahdi Ghorbani-Asl, Masao Arai, Taizo Sasaki, Yunye Liang, and Seiji Yunoki, Phys. Rev. B, 93, No. 20: 205125 (2016); https://doi.org/10.1103/PhysRevB.93.205125
- Youngbin Lee, Sung Beom Cho, and Yong-Chae Chung, ACS Appl. Mater. Interfaces, 6, No. 16: 14724 (2014); https://doi.org/10.1021/am504233d
- Gabriel Plummer, Babak Anasori, Yury Gogotsi, and Garritt J. Tucker, Comput. Mater. Sci., 157: 168 (2019); https://doi.org/10.1016/j.commatsci.2018.10.033
- Vadym N. Borysiuk, Vadym N. Mochalin, and Yury Gogotsi, Nanotechnology, 26, No. 26: 265705 (2015); https://doi.org/10.1088/0957-4484/26/26/265705
- Zheng Ling, Chang E. Ren, Meng-Qiang Zhao, Jian Yang, James M. Giammarco, Jieshan Qiuc, Michel W. Barsouma, and Yury Gogotsi, Proc. Natl. Acad. Sci., 111, No. 47: 16676 (2014); https://doi.org/10.1073/pnas.1414215111
- Narendra Kurra, Bilal Ahmed, Yury Gogotsi, and Husam N. Alsharee, Adv. Energy Mater., 6, No. 24: 1601372 (2016); https://doi.org/10.1002/aenm.201601372
- Qiu Jiang, Narendra Kurra, Kathleen Maleski, Yongjiu Lei, Hanfeng Liang, Yizhou Zhang, Yury Gogotsi, and Husam N. Alsharee, Adv. Energy Mater., 9, No. 26: 1901061 (2019); https://doi.org/10.1002/aenm.201901061
- You-Yu Peng, Bilen Akuzum, Narendra Kurra, Meng-Qiang Zhao, Mohamed Alhabeb, Babak Anasori, Emin Caglan Kumbur, Husam N. Alshareef, Ming-Der Ger, and Yury Gogotsi, Energy Environ. Sci., 9, No. 9: 2847 (2016); https://doi.org/10.1039/C6EE01717G
- Pol Salles, Evan Quain, Narendra Kurra, Asia Sarycheva, and Yury Gogotsi, Small, 4, No. 44: 1802864 (2018); https://doi.org/10.1002/smll.201802864
- Evan Quain, Tyler S. Mathis, Narendra Kurra, Kathleen Maleski, Katherine L. Van Aken, Mohamed Alhabeb, Husam N. Alshareef, and Yury Gogotsi, Adv. Mater Technol., 4, No. 1: 1800256 (2019); https://doi.org/10.1002/admt.201800256
- Liangzhu Zhang, Guoliang Yang, Zhiqiang Chen, Dan Liu, Jiemin Wang, Yijun Qian, Cheng Chen, Yuchen Liu, Lifeng Wang, Joselito Razal, and Weiwei Lei, Journal of Materiomics, 6, No. 1: 138 (2020); https://doi.org/10.1016/j.jmat.2019.12.013
- Qiang Li, Qizhao Wang, Linlin Li, Lijun Yang, Yang Wang, Xiaohui Wang, and Hai-Tao Fang, Adv. Energy Mater., 10, No. 24: 2000470 (2020); https://doi.org/10.1002/aenm.202070104
- Liangzhu Zhang, Guoliang Yang, Zhiqiang Chen, Dan Liu, Jiemin Wang, Yijun Qian, Cheng Chen, Yuchen Liu, Lifeng Wang, Joselito Razal, and Weiwei Le, J. Materiomics, 6, No. 1: 138 (2020); https://doi.org/10.1016/j.jmat.2019.12.013
- Haichao Huang, Hai Su, Haitao Zhang, Ludi Xu, Xiang Chu, Chunfeng Hu, Huan Liu, Ning jun Chen, Fangyan Liu, Wen Deng, Bingni Gu, Hepeng Zhang, and Weiqing Yang, Adv. Electron Mater., 4, No. 8: 1800179 (2018); https://doi.org/10.1002/aelm.201800179
- Aditya Sharma and Chandra Sekhar Rout, Two-Dimensional MXene Based Materials for Micro-Supercapacitors (IntechOpen: 2021); doi:10.5772/intechopen.97650
- Yang Yue, Nishuang Liu, Yanan Ma, Siliang Wang, Weijie Liu, Cheng Luo, Hang Zhang, Feng Cheng, Jiangyu Rao, Xiaokang Hu, Jun Su, and Yihua Gao, ACS Nano., 12, No. 5: 4224; https://doi.org/10.1021/acsnano.7b07528
- Haichao Huang, Xiang Chu, Hai Su, Haitao Zhang, Yanting Xie, Wen Deng, Ningjun Chen, Fangyan Liu, Hepeng Zhang, Bingni Gua, Weili Deng, and Weiqing Yang, J. Power Sources, 415: 1 (2019); https://doi.org/10.1016/j.jpowsour.2019.01.044
- Cedric Couly, Mohamed Alhabeb, Katherine L. Van Aken, Narendra Kurra, Luisa Gomes, Adriana M. Navarro-Su?rez, Babak Anasori, Husam N. Alshareef, and Yury Gogotsi, Adv. Electron Mater., 4, No. 1: 1700339 (2018); https://doi.org/10.1002/aelm.201700339
- Xing Chen, Siliang Wang, Junjie Shi, Xiaoyu Du, Qinghua Cheng, Rui Xue, Qiang Wang, Min Wang, Limin Ruan, and Wei Zeng, Adv. Mater. Interfaces, 6, No. 22: 1901160 (2019); https://doi.org/10.1002/admi.201901160
- Chenyang Yu, Yujiao Gong, Ruyi Chen, Mingyi Zhang, Jinyuan Zhou, Jianing An, Fan Lv, Shaojun Guo, and Gengzhi Sun, Small, 14, No. 29: 1801203 (2018); https://doi.org/10.1002/smll.201801203
- Qiuyan Yang, Zhen Xu, Bo Fang, Tieqi Huang, Shengying Cai, Hao Chen, Yingjun Liu, Karthikeyan Gopalsamy, Weiwei Gao, and Chao Gao, J. Mater. Chem. A, 5, No. 42: 22113 (2017); doi:10.1039/C7TA07999K
- Xing Chen, Siliang Wang, Junjie Shi, Xiaoyu Du, Qinghua Cheng, Rui Xue, Qiang Wang, Min Wang, Limin Ruan, and Wei Zeng, Adv. Mater. Interfaces, 6, No. 22: 1901160 (2019); https://doi.org/10.1002/admi.201901160
- Hongpeng Li, Xiran Li, Jiajie Liang, and Yongsheng Chen, Adv. Energy Mater., 9, No. 5: 1803987 (2019); https://doi.org/10.1002/aenm.201803987
- Yuanming Wang, Xue Wang, Xiaolong Li, Yang Bai, Huanhao Xiao, Yang Liu, and Guohui Yuan, Chem. Eng. J., 405: 126664 (2021); https://doi.org/10.1016/j.cej.2020.126664
- Nanfei He, Jinyun Liao, Feng Zhao, and Wei Gao, ACS Appl. Mater. Interfaces, 12, No. 13: 15211-9 (2020); https://doi.org/10.1021/acsami.0c00182
.
|