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Energy storage and energy-storage devices have been a buzzword for long
time as it is one of the essential needs in human life. These devices in-
clude mechanical systems, thermal systems, and batteries. These systems
embedded with software can monitor the charging and discharging phe-
nomena of energy. In this context, the role of rechargeable batteries needs
to be reviewed. Even though novel types of rechargeable batteries are be-
ing continuously developed for storage of electricity, more attention and
research towards supercapacitors is on the way. Huge number of research-
ers around the globe is involved in developing supercapacitors with im-
proved performance making them more and more useful. The main aim is
to improve their efficiency, energy density, operating voltage, miniaturi-
zation, optimization, economy, and environmental acceptance. For the last
few years, lightweight and carbon-based novel wearable supercapacitors
are developed. High durability, eco-friendliness, being non-volatile and
electrostatic mechanism of supercapacitors make them advantageous than
conventional batteries. In this regard, advances in microelectronics de-
mand microsupercapacitors (MSCs). The selection of electrode in microsu-
percapacitor plays significant role in the fabrication. In this selection,
MXenes as a family of 2D material play a vital role. Very high conductiv-
ity and high capacity of charge storage makes MXenes as one of the po-
tential materials for electrodes in microsupercapacitors. This prompts us
to review the role of MXenes in microsupercapacitors. This article reviews
the recent advances of MXenes-based MSCs with emphasis on their fabri-
cation techniques.

HaxonwuyBaui eHeprii Ta mpucTpoi HaKOIMYEHHA eHeprii BiKe JTaBHO CTaJIH

MOJIHHUM CJIOBOM, OCKLIBKHU Ile OJHA 3 HallBaKJMUBIMINX IMOTPed y *KUTTI JIIO-
nuHU. Jlo TaKUX TPUCTPOIB HaJIeKaTh MeXaHiuHi cuCcTeMH, TEIJIOBi cucTeMu
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i akymyaaropu. Ili cucremu, BOymoBaHi B mporpamHe 3abes3meueHHS, MO-
JKYTh KOHTDOJIIOBATH ABUINlA 3apANKaHHA Ta PO3PAIKAHHA eHeprii. Y mbo-
MY KOHTEKCTi HeoOXilHO meperjaHyTH POJIb aKyMyJsaTOpHuUX Oarapeii. He-
3BasKaOuu Ha Te, IO AJis 30epiraHHA eJIeKTpoeHeprii mocTiiiHo po3pobJisd-
I0ThCS HOBI THOU aKyMyJATOPHUX Oarapeil, Bce Oijblle yBarm Ta JOCJIi-
I:KeHb y raJiysi cyIlepKoHAeHcaTOpiB BiKe HaA miaxomi. BeamnuesHa KiabKicTh
IOCTiZHUKIB MO BChOMY CBiTY 6epe y4acTh y po3poOIli CymepKOHIeHCAaTOPiB
3 TOJIIMIIIEHOI0 HTPOAYKTUBHICTIO, IO poOUTH iX Bce O6imbm KopucHuUMHU. Oc-
HOBHOIO METOIO € IIiABUINEeHHS iXHbOl e)eKTUBHOCTHU, I'YCTHUHUH €Heprii, po-
6ouoi Hampyru, MiHigTiopmsailii, onmTumisaiii, eKoOHOMIiYHOCTH ¥ €KOJOTiu-
HOTO COPUUHATTS. 3a OCTaHHI KijbKa pPoKiB Oyau po3pobjeHi Jierki Ta Kap-
OOHOBiI HOBiI HmpUAATHI I/ HOCIHHA CylepKOHAeHcaTopu. Bucoka moBroBiu-
HiCTh, €KOJIOTiUHIiCTb, €HEepProHe3aJIe:KHICTh 1 eJIEKTPOCTATUUYHUNA MeXaHi3M
CYIIePKOHAEeHCATOPiB POOJATh iX BUTIAHIMIMMU Iepel 3BUYAMHUMH aKyMYy-
aaTopaMu. ¥ 3B SABKY 3 IIMM JOCSATHEHHS MiKPOEJEeKTPOHIKM BUMAaramoTh
mikpocynepkougencaTopiB (MCK). Bubip erexkTponu B MiKpOCYIEepPKOHIEH-
caTopi Bimirpae sHauHy poJib Y BUTOTOBJIeHHi. ¥ Iiii m0o0ipiii MaxkceHu AK
cimeiicTBo 2D-MaTepidasiB Bimirpae JKHUTTEBO BasKJIUBY poJib. I[y:ke BHCOKa
IpPOBigHiCTL 1 BHCOKa €MHiCThL HaKONMMUyBaua 3apsany POOUTH MaKCEHU Of-
HUM 3 IIOTEeHI[IHHWX MaTepisaiaiB /s eJeKTPoa Y MiKpoCyIepKOHIeHCaTOo-
pax. Ile cnmoHyKae Hac POSIVIAHYTH POJIb MaKCEeHIB y MiKpoCyIlepKOHAeHCA-
Topax. ¥ Iiil craTTi poariaamaioTbca ocraHHi mocarHenusa MCK Ha ocHOBi
MaKCeHiB 3 aKI[eHTOM Ha TeXHOJOTisIX BUTOTOBJIEHHS iX.

Key words: 2D MXenes, microsupercapacitors, energy storage, E-textiles,
health monitoring.
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prii, eJeKTPOHHUI TEKCTUJ/Ib, MOHITOPHHI' 340POB .
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1. INTRODUCTION

High capacitance value is being one of the top priorities since few dec-
ades in electrochemical systems. This could not be achieved earlier, but
researchers have proved that supercapacitors could show a new direc-
tion in developing electrical energy storage systems [1]. Novel materi-
als, technologies, huge surfaces and minute interelectrode distances
are being developed in recent times. Many materials exhibit high pseu-
do-capacitance achieving large capacitance values as compared to nor-
mal capacitors and are called supercapacitors or ultra-capacitors) [2].
Figure 1 shows the image of a supercapacitor.

Supercapacitors play a significant role in new generation electronic
devices and systems. Carbon and its allotropes play a vital role in su-
percapacitors in view of their thermal stability, chemical stability, me-
chanical strength, good conductivity, high electron mobility, wide
range of temperatures, large surface area and morphology.
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Fig. 1. Supercapacitor (courtesy [3]).

Figure 2 shows the classification of supercapacitors.

Depending on the mechanism involved in energy storage, super-
capacitors are of two types: pseudo-capacitors where charge storage
is fast due to redox reactions, double-layered capacitors where
charge storage depends on electrostatic principles [3, 4]. If an elec-
trode material exhibit either one or both mechanisms mentioned
above, hybrid capacitors can be formed with them. Figure 3 shows
different types of supercapacitors.

High-power rapid charging and discharging make supercapacitors
significant in energy harvesting from renewable energy sources,
power, industrial control, transport, consumer electronics, defence,
medical, communications, electric and hybrid vehicles [6—9].

2. MATERIALS FOR SUPERCAPACITORS

Supercapacitors are widely used for energy storage mainly due to
their environment friendly nature, huge number of charge, dis-
charge cycles and durability with less maintenance [10]. However,
as compared to battery they have low energy density. This drawback
force researchers towards new materials and technologies. In this
context, 2D nanomaterials such as graphene, fullerene, and carbon
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nanotubes are used as appropriate electrolytes [11]. In this journey,
usage of copper minerals, chalcosine [12] and coveline [13] was tak-
en up. In addition, perovskite oxides based on lanthanum, stronti-
um, and cerium, etc. are being researched [14]. In order to improve
further the efficiency of supercapacitors, MXenes were used.
Increased demand for flexible and smart wearable energy micro-
devices force researchers towards design and development of micro-
energy storage devices. Since microbatteries have limited life and
power density, best alternative to them are microsupercapacitors
(MSCs) despite lower energy density. Still stability and fast
charge/discharge cycles MSCs are preferred [15]. MSCs may be of
regular sandwich type or plane interdigital pattern type, in which
the second one offers better performance [16, 17]. Various 2D ma-
terials such as graphene, MXenes with excellent electronic, optical,
mechanical, physical and chemical properties make them significant
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Fig. 3. (a) Electrical double layer capacitor (EDLC); (b) pseudo-capacitor
(PC); (¢) hybrid supercapacitor (HSC) (courtesy [5]).

in energy storage applications [18]. Even with large conductivity
and surface area, carbon based materials lack high energy density
[19-24]. Likewise, pseudo-capacitive materials, which have low con-
ductivity [25—28], are used in MSCs. Since the discovery of MXenes
in 2011, they have gathered the attention of scientific community
for usage in MSCs [29].

2. MXenes: SYNTHESIS AND PROPERTIES

MXenes are synthesized either by selective etching or through
chemical vapour deposition. First reports on synthesis of MXene
indicated elimination of Al layer from Ti;AlC, (MAX) by using hy-
drogen fluoride [28]. Exfoliated two-dimensional Ti;C,T, possess
morphology similar to 2D sheets resembling graphene sheets [30].
Various methods were used to avoid highly acidic HF acid.

Figure 4 below demonstrates the development of MXenes from
MAX phases through HF treatment and their compositions in peri-
odic table.
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Fig. 4. (a) Schematic showing the synthesis of MXene from MAX by HF
treatment; (b) synthesis mechanism of different order of MXenes by MAX
phases; (c) compositions of MXene elements in periodic table (courtesy [31]).

Based on the method of synthesis, the characteristics of MXene
are altered. It is reported that more than twenty types of MXenes
have been synthesized experimentally [32].

MXenes act as significant platforms for supercapacitors in view of
their electrical, mechanical properties and their surface morphology.
They are classified into metallic, semi-metallic and semi-conducting
materials [33]. Usually uncovered, they exhibit high conductivity and
their electronic properties strongly depend on morphology and stack-
ing of MXene sheets. It is reported that delaminated MXenes exhibit
ultrahigh conductivity of up to 9880 S/cm [34]. Also depending on the
synthesis method, a conductivity of 1 000 S/cm with HF etching was
reported by MXene. This can be tuned to an extent of 4600 S/cm to
6500 S/cm in case of thick films with delaminated MXene by altering
sonication and etching [35].

Mechanical properties of MXenes depend on their specific physical
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and chemical properties. Many studies on mechanical, electronic and
thermal properties of various MXenes have been reported [36—40].
Young’s modulus of Ti;C,0, and Ti;CO, were reported as 466 and 983
GPA [41], which correlate with values predicted by simulation [42]. In
this context, a study reported a paper film with Ti;C,T,/PVA compo-
site of thickness of 5 ym that can withstand approximately 15 000
times of its weight [43] indicating its strong wear. However, surface
properties can be modified through surface terminations.

3. MXenes AND THEIR HYBRIDS FOR
MICROSUPERCAPACITORS

High metallic conductivity and unique morphology of MXenes make
them highly significant in microsupercapacitors. Low cost MXene
MSC with 128 S/cm electrical conductivity and 25 mF/cm? capacitance
in PVA-H,SO, gel electrolyte was reported [44]. They also demonstrat-
ed that capacitance increases with thickness of the material. Similarly,
MXene based MSC with wafer scale approach using photolithography
with more capacitance was reported. This device was capable of con-
verting the output peak voltage from 0.6 V to —0.56 V as compared to a
commercial capacitor with 4mF [45]. A Ti;C,T, spray coated glass sub-
strate with inter digital pattern with an areal capacitance of 20
mF/cm? at 20 mV/s and ultrahigh volumetric capacitance of 357F/cm?®
at 0.2 mA/cm? was fabricated. This was superior to other carbon mate-
rials already reported. However, usage of platinum collectors was re-
ported to increase an areal capacitance to 27.3 mF/cm?[46]. Recently a
semi-transparent MXene film was used with micropatterns of various
transparency levels. With increase of 50% transparency, an areal ca-
pacitance increased by almost fifteen times from 19 pF/cm? to 283
pF/cm?. At the same time, increase in resistance from 0.8 kQ to 2 kQ
with increase in coating cycle has been observed [47]. Double-sided
MSCs with MXene ink of 7.2 V potential were fabricated. Sharp rise in
capacitance was observed with decrease of inter spacing between
MZXene electrodes. Such device with an inter electrode gap of 10 um
offered huge volumetric capacitance of 308 F/cm® at 5 mV/s and
96.4% efficiency above 10 000 cycles too [48]. Series connected MSCs
achieved a high potential of up to 2.4 V [49]. Fabrication of MSCs with
MXene as negative and MXene—MoO, film as positive electrode was
reported. This technique included vacuum filtration of films followed
by laser cutting of interdigital patterns as shown in Fig. 5 [50].

By using the technique of vacuum filtration, thick sheets of
MXene were used to develop films with conductivity up to 1.25-10°
S/m for flexible microsupercapacitor. Likewise, MSCs with interdig-
ital pattern having 8340 mF/cm?® areal capacitance and 183 F/cm?
volumetric capacitance with energy density of 12.4 mWh/cm® and
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ent shapes such as spiral (b), parallel inter digital fingers (¢, d), twelve
parallel inter digital MSCs integrated on one paper (e), and MSCs trans-
ferred onto glass substrate (f) and cloth substrate (g) (courtesy [50]).

power density of 218 mW /cm?® are fabricated [51]. In addition, pa-
per based MXene electrodes with high conductivity and areal capac-
itance of 28.4 mF/cm? at 0.05 mA/cm?® was fabricated. In continua-
tion, fabrication of electrodes in series as well as parallel was taken
up to achieve required capacitance [52].

MSCs based on MXenes and CNT with fast ion diffusion and high
conductivity were reported. They achieved this by fixing a gap of
500 nm between interdigital fingers and obtained areal capacitance
of 8317.3 mF/cm? at 50 mV/s. Decrease in gap increased an areal
capacitance and energy density attributed to improved rate of ionic
transfer [53, 54]. Fabrication of a three dimensional MXene/rGO
aerogel MSC was reported. Figure 6 show the fabrication process, in
which the device was embedded with polyurethane for adhering to
external damage. This device exhibits an areal capacitance of 34.6
mF/ cm? at 1 mV/s with excellent recovery of electronic and me-
chanical properties even after full breakdown [55, 56].

A high performance asymmetric flexible MSC with rGO as positive
and MXene as negative electrodes achieved a working potential of 1 V
with number of bending cycles and 2.4 mF/cm? areal capacitance at 2
mV/s indicating MXenes potential for negative electrodes in asymmet-
ric devices with high stability and strong performance [56].
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MXene-rGO composite; (d) cycling stability of MXene—rGO composite aer-
ogel MSC at 2 mA-cm™.

MXenes are also capable of producing textile based energy stor-
age devices with high stability and tunability. Helical shaped
MXene/CNT with scaffold hybrid structure reported 19.1 F/cm?®
volumetric capacitance at 1 A/cm® in aqueous LiCl electrolyte. Its
energy density was of about 2.55 to 1.15 mWh/cm? at power densi-
ty of 0.046 W/cm? to 1.82 W /cm?, which is almost equal to the best
performing capacitor [57].
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Similarly, fabricated MXene/rGO hybrid fibre supercapacitors us-
ing wet spinning exhibit high volumetric capacitance of 586.4 F/cm? at
10 mV/s. These fibres report high conductivity of 3-10* S/cm whose
flexibility can be enhanced by changing the grapheme content [58].
Similarly, fabrication of MSCs by introducing the MoS, into MXenes
enhanced the electrochemical performance by 60% in comparison to
pristine MXene [59]. Self-restacking of MXene layers was taken up by
adding RuO, nanoparticles in order to improve ion exchange rate. In-
tegration of conductive Ag nanowires into MXene decreases electrodes
surface resistance. These strategies achieved MSC with volumetric ca-
pacitance of 864.2 F-cm™2 at 1 mV/s with 90% of capacitance retention
even after 10 000 cycles [60].

PANI/MXene-based film electrodes with an exceptionally high vol-
umetric capacitance of 1167 F-cm™ were reported for the first time
[61]. Stretchable MSCs based on MXene/bacterial cellulose composite
with high Young’s modulus of 15—-35 GPa and tensile strength of up to
200-300 GPa were fabricated. Here, bacterial cellulose acts as a gap
between MXene sheets preventing re-stacking of MXene flakes [62].
MXene—polymer composite nanofibers as flexible yarn electrodes were
synthesized. This was achieved by electro spinning of active material
on PET sheets. This device displays high areal capacitance of up to
18.39 mF/cm? at scan rate of 50 mV/s, which is better than many other
carbon based yarn fibre supercapacitors [63]. In continuation, another
group reported similar MSCs such as MXene/PEDOT-PSS-based yarn
supercapacitors (YSCs) with 95% capacitive retention after 10 000 cy-
cles, which is found significant in portable electronics [64]. In the same
way, fabrication of dual-core yarn supercapacitor (YSC) with GO and
MZXene hybrid fibres encapsulated with PVA-H,SO, was reported. Its
mean diameter was of approximately 500 pym with excellent linear ca-
pacitance of 43.6 mF/cm at 20 mV/s [65].

5. CONCLUSIONS

Right from the discovery of MXenes, they have become one of the
unique choices for microelectrodes in MSCs for electronics applica-
tions. Their excellent properties such as large conductivity, volumet-
ric capacitance makes them well suited for MSCs. However, fabrication
of MXene-based MSCs is in the development stage, which needs to be
further optimized in terms of material used for electrode, substrates
and electrolytes. As per the existing literature, main focus of MXene
based MSCs is towards the increase in areal capacitance and power den-
sity. Already, it is observed that self-discharging in open circuit condi-
tion needs to be attended on immediate basis. As per the earlier re-
ports, this drawback can be rectified through integrating MSCs with
solar power cells to enhance long-term charge storage property instead
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of self-discharging. In order to increase the electrochemical perfor-
mance, electrolyte selection plays a vital role. Usually, polymer gel
electrolyte was used for ion exchange in MXene-based electrodes for
microdevices, whose output voltage is low. Hence, alternative is re-
quired in order to increase the voltage and stability. Hence, different
electrolytes and polymers need to be envisaged, which enhance per-
formance of MSCs. However, ionogel may be one option with high sta-
bility in terms of mechanical and thermal than regular gel electrolytes.
Expansion of potential may be possible with asymmetric devices for
real time applications. Apart from the Ti;C,Ti, (MXene) based MSCs,
many MXene materials might be synthesised for better understanding
of charge storage mechanism that lead to future MSCs devices.
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