Issues

 / 

2023

 / 

vol. 21 / 

Issue 4

 



Download the full version of the article (in PDF format)

N. V. Krishna Prasad and N. Madhavi
Applications of 2D Materials (MXenes) in Sensors: A Minireview
829–842 (2023)

PACS numbers: 07.07.Df, 77.84.Lf, 81.05.Je, 81.05.Zx, 81.07.Bc, 81.16.Ta, 81.65.Cf

MXenes are a class of 2D material produced from the MAX phase structure, e.g., 3D atomic laminate Ti3AlC2; they have a combination of layered carbides and nitrides. They belong to a distinctive type of structured materials with better conductivity than metals, increased ionic conductivity, flexible mechanical properties, and being hydrophilic. MXenes can be structured to form nanoparticles, multi- and single-layered nanosheets, which exhibit large specific surface areas enhancing their efficiency of sensing in MXene sensors. In addition, they are capable of forming composites with other materials with ease. Their morphology enhances their mechanical flexibility and stretchability enabling them to have wide applications in energy-storage devices, wearable sensors, and for electromagnetic shielding. Considering this, an attempt is made to review the recent advances in MXenes with emphasis on their applications in the area of wearable sensors that include pressure, strain, biochemical, temperature and gas sensing.

Key words: MXenes, gas sensor, temperature sensor, pressure sensor, biosensor.

https://doi.org/

References
  1. T. L. Tan, H. M. Jin, M. B. Sullivan, B. Anasori, and Y. Gogotsi, ACS Nano, 11, No. 5: 4407 (2017); http://doi.org/10.1021/acsnano.6b08227
  2. Michael Naguib, Murat Kurtoglu, Volker Presser, Jun Lu, Junjie Niu, Min Heon, Lars Hultman, Yury Gogotsi, and Michel W. Barsoum, Advanced Materials, 23, No. 37: 4248 (2011); https://doi.org/10.1002/adma.201102306
  3. Qixun Xia, Yulong Fan, Shiwen Li, Aiguo Zhou, Nanasaheb Shinde, Rajaram S. Mane, Diamond and Related Materials, 131: 109557 (2023); https://doi.org/10.1016/j.diamond.2022.109557
  4. Grayson Deysher, Christopher Eugene Shuck, Kanit Hantanasirisakul, Nathan C. Frey, Alexandre C. Foucher, Kathleen Maleski, Asia Sarycheva, Vivek B. Shenoy, Eric A. Stach, Babak Anasori, and Yury Gogotsi, ACS Nano, 14, No. 1: 204 (2020); https://doi.org/10.1021/acsnano.9b07594
  5. Martin Magnuson and Maurizio Mattesini, Thin Solid Films, 621, No. 1: 108 (2017); https://doi.org/10.1016/j.tsf.2016.11.005
  6. Rahele Meshkian, Lars-?ke N?slund, Joseph Halim, Jun Lu, Michel W. Barsoum, and Johanna Rosen, J. Scr. Mater., 108: 147 (2015); http://doi:10.1016/j.scriptamat.2015.07.003
  7. Faisal Shahzad, Mohamed Alhabeb, Christine B. Hatter, Babak Anasori, Soon Man Hong, Chong Min Koo, and Yury Gogotsi, Science, 353, Iss. 6304: 1137 (2016); http://doi:10.1126/science.aag2421
  8. Michael Naguib, Vadym N. Mochalin, Michel W. Barsoum, and Yury Gogotsi, Adv. Mater., 26, No. 7: 992 (2014); doi:10.1002/adma.201304138
  9. Mohamed Alhabeb, Kathleen Maleski, Babak Anasori, Pavel Lelyukh, Leah Clark, Saleesha Sin, and Yury Gogotsi, Chem. Mater., 29: 7633 (2017); doi:10.1021/acs.chemmater.7b02847
  10. Massoud Malaki, Aziz Maleki, and Rajender S. Varma, J. Mater. Chem., 7, No. 18: 51 (2016); doi:10.1039/C9TA01850F
  11. Michael Naguib, Olha Mashtalir, Joshua Carle, Volker Presser, Jun Lu, Lars Hultman, Yury Gogotsi, and Michel W. Barsoum, ACS Nano, 6, No. 2: 1322 (2012); doi:10.1021/nn204153h
  12. Ingemar Persson, Ahmed el Ghazaly, Quanzheng Tao, Joseph Halim, Sankalp Kota, Vanya Darakchieva, Justinas Palisaitis, Michel W. Barsoum, Johanna Rosen, and Per O. ?. Persson, Small, 14, No. 17: 1703676 (2018); doi:10.1002/smll.201703676
  13. Z. A. M. Rasid, M. F. Omar, M. F. M. Nazeri, M. A. A. A’ziz, and M. Szota, IOP Conf. Ser.: Mater. Sci. Eng., 209, No. 1: 012001 (2017); doi:10.1088/1757-899X/209/1/012001
  14. Jin Jia, Tanli Xiong, Lili Zhao, Fulei Wang, Hong Liu, Renzong Hu, Jian Zhou, Weijia Zhou, and Shaowei Chen, ACS Nano, 11, No. 12: 12509 (2017); http://doi:10.1021/acsnano.7b06607
  15. Xu Xiao, Huimin Yu, Huanyu Jin, Menghao Wu, Yunsheng Fang, Jiyu Sun, Zhimi Hu, Tianqi Li, Jiabin Wu, Liang Huang, Yury Gogotsi, and Jun Zhou, ACS Nano, 11, No. 2: 2180 (2017); doi:10.1021/acsnano.6b08534
  16. Zixing Wang, Vidya Kochat, Prafull Pandey, Sanjay Kashyap, Soham Chattopadhyay, Atanu Samanta, Suman Sarkar, Praveena Manimunda, Xiang Zhang, Syed Asif, Abhisek K. Singh, Kamanio Chattopadhyay, Chandra Sekhar Tiwary, and Pulickel M. Ajayan, Adv. Mater, 29, No. 29: 1700364 (2017); doi:10.1002/adma.201700364
  17. Ankita Sinhaa, Dhanjai, Huimin Zhao, Yujin Huang, Xianbo Lu, Jiping Chen, and Rajeev Jain, TrAC Trends in Analytical Chemistry, 105: 424 (2018); https://doi.org/10.1016/j.trac.2018.05.021
  18. Jun Chang Yang, Jaewan Mun, Se Young Kwon, Seongjun Park, Zhenan Bao, and Steve Park, Adv. Mater., 31, No. 48: 1904765 (2019); doi:10.1002/adma.201904765
  19. Ning Li, Yue Jiang, Chuanhong Zhou, Yan Xiao, Bo Meng, Ziya Wang, Dazhou Huang, Chenyang Xing, and Zhengchun Peng, ACS Appl. Mater. Interfaces, 11, No. 41: 38116 (2019); doi:10.1021/acsami.9b12168
  20. Amay J. Bandodkar, William J. Jeang, Roozbeh Ghaffari, and John A. Rogers, Annu. Rev. Anal. Chem., 12, No. 1: 1 (2019); doi:10.1146/annurev-anchem-061318-114910
  21. Tyler Ray, Jungil Choi, Jonathan Reeder, Stephen P. Lee, Alexander J. Aranyosi, Roozbeh Ghaffari, and John A. Rogers, Curr. Opin. Biomed. Eng., 9: 47 (2019); doi:10.1016/j.cobme.2019.01.003
  22. Sheng Xu, Yihui Zhang, Lin Jia, Kyle E. Mathewson, Kyung-In Jang, Jeonghyun Kim, Haoran Fu, Xian Huang, Pranav Chava, Renhan Wang, Sanat Bhole, Lizhe Wang, Yoon Joo Na, Yue Guan, Matthew Flavin, Zheshen Han, Yonggang Huang, and John A. Rogers, Science, 344, No. 6179: 70 (2014); doi:10.1126/science.1250169
  23. Razium Ali Soomro, Sana Jawaid, Qizhen Zhu, Zaheer Abbas, and Bin Xu, Chinese Chemical Letters, 31, No. 4: 922 (2020); https://doi.org/10.1016/j.cclet.2019.12.005
  24. Babak Anasori, Yu Xie, Majid Beidaghi, Jun Lu, Brian C. Hosler, Lars Hultman, Paul R. C. Kent, Yury Gogotsi, and Michel W. Barsoum, ACS Nano, 9, No. 10: 9507 (2015); http://doi:10.1021/acsnano.5b03591
  25. Zhong Ma, Sheng Li, Huiting Wang, Wen Cheng, Yun Li, Lijia Pan, and Yi Shi, J. Mater. Chem. B, 7, No. 2: 173 (2019); doi:10.1039/C8TB02862A
  26. Xinlei Shi, Huike Wang, Xueting Xie, Qingwen Xue, Jingyu Zhang, Siqi Kang, Conghui Wang, Jiajie Liang, and Yongsheng Chen, ACS Nano, 13, No. 1: 649 (2019); doi:10.1021/acsnano.8b07805
  27. Yichen Cai, Jie Shen, Gang Ge, Yizhou Zhang, Wanqin Jin, Wei Huang, Jinjun Shao, Jian Yang, and Xiaochen Dong, ACS Nano, 12, No. 1: 56: (2018); doi:10.1021/acsnano.7b06251
  28. Zheng Linga, Chang E. Rena, Meng-Qiang Zhaoa, Jian Yanga, James M. Giammarco, Jieshan Qiuc, Michel W. Barsouma, and Yury Gogotsi, Proc. Natl. Acad. Sci. U.S.A., 111, No. 47: 16676 (2014); doi:10.1073/pnas.1414215111
  29. Hyosung An, Touseef Habi, Smit Shah, Huili Gao, Miladin Radovic, Micah J. Green, and Jodie L. Lutkenhaus, Sci. Adv., 4, No. 3: 4652 (2018); doi:10.1126/sciadv.aaq0118
  30. Yina Yang, Liangjing Shi, Zherui Cao, Ranran Wang, and Jing Sun, Adv. Funct. Mater, 29, No. 14: 1807882 (2019); doi:10.1002/adfm.201807882
  31. Hui Liao, Xuelin Guo, Pengbo Wan, and Guihua Yu, Adv. Funct. Mater., 29, No. 39: 1904507 (2019); doi:10.1002/adfm.201904507
  32. Han Li and Zhaoqun Du, ACS Appl. Mater. Interfaces, 11, No. 49: 45930 (2019); https://doi.org/10.1021/acsami.9b19242
  33. Yanan Ma, Nishuang Liu, Luying Li, Xiaokang Hu, Zhengguang Zou, Jianbo Wang, Shijun Luo, and Yihua Gao, Nat. Commun., 8, No. 1207 (2017); doi:10.1038/s41467-017-01136-9
  34. Ying Guo, Mengjuan Zhong, Zhiwei Fang, Pengbo Wan, and Guihua Yu, NanoLetters, 19, No. 2: 1143 (2019); https://doi.org/10.1021/acs.nanolett.8b04514
  35. Hao Zhuo, Yijie Hu, Zehong Chen, Xinwen Peng, Linxiang Liu, Qingsong Luo, Jiwang Yi, Chuanfu Liu, and Linxin Zhong, J. Mater. Chem. A, 7: 8092 (2019); doi:10.1039/C9TA00596J
  36. Kang Wang, Zheng Lou, Lili Wang, Lianjia Zhao, Shufang Zhao, Dongyi Wang, Wei Han, Kai Jiang, and Guozhen Shen, ACS Nano, 13, No. 8: 9139 (2019); doi:10.1021/acsnano. 9b03454
  37. Xiao-Peng Li, Yue Li, Xiaofeng Li, Dekui Song, Peng Min, Chen Hu, Hao-Bin Zhang, Nikhil Koratkar, and Zhong-Zhen Yu, J. Coll. Interface Sci., 542: 54 (2019); doi:10.1016/j.jcis.2019.01.123
  38. Ying Guo, Mengjuan Zhong, Zhiwei Fang, Pengbo Wan, and Guihua Yu, Nano Letters, 19, No. 2: 1143 (2019); doi:10.1021/acs.nanolett.8b04514
  39. Zehong Chen, Yijie Hu, Hao Zhuo, Linxiang Liu, Shuangshuang Jing, Linxin Zhong, Xinwen Peng, and Run-cang Sun, Chem. Mater, 31, No. 9: 3301 (2019); doi:10.1021/acs.chemmater.9b00259
  40. Han Lin, Shanshan Gao, Chen Dai, Yu Chen, and Jianlin Shi, J. Am. Chem. Soc., 139, No. 45: 16235 (2017); doi:10.1021/jacs.7b07818
  41. Zhong Ma, Ping Chen, Wen Cheng, Kun Yan, Lijia Pan, Yi Shi, and Guihua Yu, Nano Lett., 18, No. 7: 4570 (2018); doi:10.1021/acs.nanolett.8b01825
  42. Ruma Ghosh, Arvinder Singh, Sumita Santra, Samit K. Ray, Amreesh Chandra, and Prasanta K. Guha, Actuat. B Chem., 205: 67 (2014); doi:10.1016/j.snb.2014.08.044
  43. Xue-fang Yu, Yanchun Li, Jian-Bo Cheng, Zhen-Bo Liu, Qing-Zhong Li, Wen-Zuo Li, Xin Yang, and Bo Xiao, ACS Appl. Mater. Interfaces, 7, No. 24: 13707 (2015); doi:10.1021/acsami.5b03737
  44. Bo Xiao, Yan-chun Li, Xue-fang Yu, and Jian-bo Cheng, Sens. Actuat. B Chem., 235: 103 (2016); doi:10.1016/j.snb.2016.05.062
  45. Sang Hoon Lee, Wonsik Eom, Hwansoo Shin, Rohan B. Ambade, Jae Hoon Bang, Hyoun Woo Kim, and Tae Hee Han, ACS Appl. Mater. Interfaces, 12, No. 9: 10434: (2020); doi:10.1021/acsami.9b21765
  46. Seon Joon Kim, Hyeong-Jun Koh, Chang E. Ren, Ohmin Kwon, Kathleen Maleski, Soo-Yeon Cho, Babak Anasori, Choong-Ki Kim, Yang-Kyu Choi, Jihan Kim, Yury Gogotsi, and Hee-Tae Jung, ACS Nano, 12, No. 2: 986 (2018); doi:10.1021/acsnano.7b07460
  47. Eunji Lee, Armin VahidMohammadi, Young Soo Yoon, Majid Beidaghi, and Dong-Joo Kim, ACS Sens., 4, No. 6: 1603 (2019); doi:10.1021/acssensors.9b00303
  48. Feitian Ran, Tianlin Wang, Siyu Chen, Yuyan Liu, and Lu Shao, Appl. Surf. Sci., 511: 145627 (2020); http://doi.org/10.1016/j.apsusc.2020.145627
  49. Qixun Xia, Yulong Fan, Shiwen Li, Aiguo Zhou, Nanasaheb Shinde, Rajaram S. Mane, Diamond and Related Materials, 131: 109557: (2023); https://doi.org/10.1016/j.diamond.2022.109557
  50. L. Lorencova, T. Bertok, E. Dosekova, A. Holazova, D. Paprckova, A. Vikartovska, V. Sasinkova, J. Filip, P. Kasak, M. Jerigova, D. Velic, Kh. A. Mahmoud, and J. Tkac, Electrochimica Acta, 235: 471 (2017); DOI: 10.1016/j.electacta.2017.03.073
  51. S. Neampet, N. Ruecha, J. Qin, W. Wonsawat, O. Chailapakul, and N. Rodthongkum, Microchim. Acta, 186: 752 (2019); https://doi.org.10.1007/s00604-019-3845-3
  52. B. Xiao, Y.-C. Li, X.-F. Yu, and J.-B. Cheng, Sensors Actuators B Chem., 235: 103 (2016); http://doi.org.10.1016/j.snb.2016.05.062
  53. Ankita Sinha, Dhanjai, Huimin Zhao, Yujin Huang, Xianbo Lu, Jiping Chen, and Rajeev Jain, TrAC Trends in Analytical Chemistry, 105: 424 (2018); https://doi.org/10.1016/j.trac.2018.05.021
  54. Xu Chen, Xueke Sun, Wen Xu, Gencai Pan, Donglei Zhou, Jinyang Zhu, He Wang, Xue Bai, Biao Dong, and Hongwei Song, Nanoscale, 10: 1111 (2018); doi:10.1039/C7NR06958H
  55. R. B. Rakhi, Pranati Nayuk, Chuan Xia, and Husam N. Alshareef, Sci. Rep., 6: 36422 (2016); https://doi.org/10.1038/srep36422
  56. Menghui Lia, Liang Fang, Hua Zhou, Fang Wua, Yi Lu, Haijun Luo, Yuxin Zhang, and Baoshan Hu, Appl. Surf. Sci., 495: 143554 (2019); https://doi.org/10.1016/j.apsusc.2019.143554
  57. Jiushang Zheng, Bin Wang, Ailing Ding, Bo Weng, and Jiucun Chen, J. Electroanalyt. Chem., 816: 189 (2018); https://doi.org/10.1016/j.jelechem.2018.03.056
  58. Fen Wang, ChenHui Yang, Max Duan, Yi Tang, and JianFeng Zhu, Biosens. Bioelectron., 74: 1022 (2015); https://doi.org/10.1016/j.bios.2015.08.004
  59. Hui Liu, Congyue Duan, Chenhui Yang, Wanqiu Shen, Fen Wang, and Zhenfeng Zhu, Sens. Actuat. B Chem., 218: 60 (2015); https://doi.org/10.1016/j.snb.2015.04.090
  60. Xiaolei Zhu, Bingchuan Liu, Huijie Houa, Zhenying Huang, Kemal Mohammed, Zeinua, Long Huanga, Xiqing Yuan, Dabin Guo, Jingping Hu, and Jiakuan Yang, Electrochimica Acta, 248: 46 (2017); https://doi.org/10.1016/j.electacta.2017.07.084
  61. Asif Shahzad, Kashif Rasool, Waheed Miran, Mohsin Nawaz, Jiseon Jang, Khaled A. Mahmoud, and Dae Sung Lee, ACS Sust. Chem. Eng., 5: 11481 (2017); https://doi.org/10.1021/acssuschemeng.7b02695
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement