Download the full version of the article (in PDF format)
N. V. Krishna Prasad and N. Madhavi
Applications of 2D Materials (MXenes) in Sensors: A Minireview
829–842 (2023)
PACS numbers: 07.07.Df, 77.84.Lf, 81.05.Je, 81.05.Zx, 81.07.Bc, 81.16.Ta, 81.65.Cf
MXenes are a class of 2D material produced from the MAX phase structure, e.g., 3D atomic laminate Ti3AlC2; they have a combination of layered carbides and nitrides. They belong to a distinctive type of structured materials with better conductivity than metals, increased ionic conductivity, flexible mechanical properties, and being hydrophilic. MXenes can be structured to form nanoparticles, multi- and single-layered nanosheets, which exhibit large specific surface areas enhancing their efficiency of sensing in MXene sensors. In addition, they are capable of forming composites with other materials with ease. Their morphology enhances their mechanical flexibility and stretchability enabling them to have wide applications in energy-storage devices, wearable sensors, and for electromagnetic shielding. Considering this, an attempt is made to review the recent advances in MXenes with emphasis on their applications in the area of wearable sensors that include pressure, strain, biochemical, temperature and gas sensing.
Key words: MXenes, gas sensor, temperature sensor, pressure sensor, biosensor.
Issue DOI: https://doi.org/10.15407/nnn.21.04.829
References
- T. L. Tan, H. M. Jin, M. B. Sullivan, B. Anasori, and Y. Gogotsi, ACS Nano, 11, No. 5: 4407 (2017); http://doi.org/10.1021/acsnano.6b08227
- Michael Naguib, Murat Kurtoglu, Volker Presser, Jun Lu, Junjie Niu, Min Heon, Lars Hultman, Yury Gogotsi, and Michel W. Barsoum, Advanced Materials, 23, No. 37: 4248 (2011); https://doi.org/10.1002/adma.201102306
- Qixun Xia, Yulong Fan, Shiwen Li, Aiguo Zhou, Nanasaheb Shinde, Rajaram S. Mane, Diamond and Related Materials, 131: 109557 (2023); https://doi.org/10.1016/j.diamond.2022.109557
- Grayson Deysher, Christopher Eugene Shuck, Kanit Hantanasirisakul, Nathan C. Frey, Alexandre C. Foucher, Kathleen Maleski, Asia Sarycheva, Vivek B. Shenoy, Eric A. Stach, Babak Anasori, and Yury Gogotsi, ACS Nano, 14, No. 1: 204 (2020); https://doi.org/10.1021/acsnano.9b07594
- Martin Magnuson and Maurizio Mattesini, Thin Solid Films, 621, No. 1: 108 (2017); https://doi.org/10.1016/j.tsf.2016.11.005
- Rahele Meshkian, Lars-?ke N?slund, Joseph Halim, Jun Lu, Michel W. Barsoum, and Johanna Rosen, J. Scr. Mater., 108: 147 (2015); http://doi:10.1016/j.scriptamat.2015.07.003
- Faisal Shahzad, Mohamed Alhabeb, Christine B. Hatter, Babak Anasori, Soon Man Hong, Chong Min Koo, and Yury Gogotsi, Science, 353, Iss. 6304: 1137 (2016); http://doi:10.1126/science.aag2421
- Michael Naguib, Vadym N. Mochalin, Michel W. Barsoum, and Yury Gogotsi, Adv. Mater., 26, No. 7: 992 (2014); doi:10.1002/adma.201304138
- Mohamed Alhabeb, Kathleen Maleski, Babak Anasori, Pavel Lelyukh, Leah Clark, Saleesha Sin, and Yury Gogotsi, Chem. Mater., 29: 7633 (2017); doi:10.1021/acs.chemmater.7b02847
- Massoud Malaki, Aziz Maleki, and Rajender S. Varma, J. Mater. Chem., 7, No. 18: 51 (2016); doi:10.1039/C9TA01850F
- Michael Naguib, Olha Mashtalir, Joshua Carle, Volker Presser, Jun Lu, Lars Hultman, Yury Gogotsi, and Michel W. Barsoum, ACS Nano, 6, No. 2: 1322 (2012); doi:10.1021/nn204153h
- Ingemar Persson, Ahmed el Ghazaly, Quanzheng Tao, Joseph Halim, Sankalp Kota, Vanya Darakchieva, Justinas Palisaitis, Michel W. Barsoum, Johanna Rosen, and Per O. ?. Persson, Small, 14, No. 17: 1703676 (2018); doi:10.1002/smll.201703676
- Z. A. M. Rasid, M. F. Omar, M. F. M. Nazeri, M. A. A. A’ziz, and M. Szota, IOP Conf. Ser.: Mater. Sci. Eng., 209, No. 1: 012001 (2017); doi:10.1088/1757-899X/209/1/012001
- Jin Jia, Tanli Xiong, Lili Zhao, Fulei Wang, Hong Liu, Renzong Hu, Jian Zhou, Weijia Zhou, and Shaowei Chen, ACS Nano, 11, No. 12: 12509 (2017); http://doi:10.1021/acsnano.7b06607
- Xu Xiao, Huimin Yu, Huanyu Jin, Menghao Wu, Yunsheng Fang, Jiyu Sun, Zhimi Hu, Tianqi Li, Jiabin Wu, Liang Huang, Yury Gogotsi, and Jun Zhou, ACS Nano, 11, No. 2: 2180 (2017); doi:10.1021/acsnano.6b08534
- Zixing Wang, Vidya Kochat, Prafull Pandey, Sanjay Kashyap, Soham Chattopadhyay, Atanu Samanta, Suman Sarkar, Praveena Manimunda, Xiang Zhang, Syed Asif, Abhisek K. Singh, Kamanio Chattopadhyay, Chandra Sekhar Tiwary, and Pulickel M. Ajayan, Adv. Mater, 29, No. 29: 1700364 (2017); doi:10.1002/adma.201700364
- Ankita Sinhaa, Dhanjai, Huimin Zhao, Yujin Huang, Xianbo Lu, Jiping Chen, and Rajeev Jain, TrAC Trends in Analytical Chemistry, 105: 424 (2018); https://doi.org/10.1016/j.trac.2018.05.021
- Jun Chang Yang, Jaewan Mun, Se Young Kwon, Seongjun Park, Zhenan Bao, and Steve Park, Adv. Mater., 31, No. 48: 1904765 (2019); doi:10.1002/adma.201904765
- Ning Li, Yue Jiang, Chuanhong Zhou, Yan Xiao, Bo Meng, Ziya Wang, Dazhou Huang, Chenyang Xing, and Zhengchun Peng, ACS Appl. Mater. Interfaces, 11, No. 41: 38116 (2019); doi:10.1021/acsami.9b12168
- Amay J. Bandodkar, William J. Jeang, Roozbeh Ghaffari, and John A. Rogers, Annu. Rev. Anal. Chem., 12, No. 1: 1 (2019); doi:10.1146/annurev-anchem-061318-114910
- Tyler Ray, Jungil Choi, Jonathan Reeder, Stephen P. Lee, Alexander J. Aranyosi, Roozbeh Ghaffari, and John A. Rogers, Curr. Opin. Biomed. Eng., 9: 47 (2019); doi:10.1016/j.cobme.2019.01.003
- Sheng Xu, Yihui Zhang, Lin Jia, Kyle E. Mathewson, Kyung-In Jang, Jeonghyun Kim, Haoran Fu, Xian Huang, Pranav Chava, Renhan Wang, Sanat Bhole, Lizhe Wang, Yoon Joo Na, Yue Guan, Matthew Flavin, Zheshen Han, Yonggang Huang, and John A. Rogers, Science, 344, No. 6179: 70 (2014); doi:10.1126/science.1250169
- Razium Ali Soomro, Sana Jawaid, Qizhen Zhu, Zaheer Abbas, and Bin Xu, Chinese Chemical Letters, 31, No. 4: 922 (2020); https://doi.org/10.1016/j.cclet.2019.12.005
- Babak Anasori, Yu Xie, Majid Beidaghi, Jun Lu, Brian C. Hosler, Lars Hultman, Paul R. C. Kent, Yury Gogotsi, and Michel W. Barsoum, ACS Nano, 9, No. 10: 9507 (2015); http://doi:10.1021/acsnano.5b03591
- Zhong Ma, Sheng Li, Huiting Wang, Wen Cheng, Yun Li, Lijia Pan, and Yi Shi, J. Mater. Chem. B, 7, No. 2: 173 (2019); doi:10.1039/C8TB02862A
- Xinlei Shi, Huike Wang, Xueting Xie, Qingwen Xue, Jingyu Zhang, Siqi Kang, Conghui Wang, Jiajie Liang, and Yongsheng Chen, ACS Nano, 13, No. 1: 649 (2019); doi:10.1021/acsnano.8b07805
- Yichen Cai, Jie Shen, Gang Ge, Yizhou Zhang, Wanqin Jin, Wei Huang, Jinjun Shao, Jian Yang, and Xiaochen Dong, ACS Nano, 12, No. 1: 56: (2018); doi:10.1021/acsnano.7b06251
- Zheng Linga, Chang E. Rena, Meng-Qiang Zhaoa, Jian Yanga, James M. Giammarco, Jieshan Qiuc, Michel W. Barsouma, and Yury Gogotsi, Proc. Natl. Acad. Sci. U.S.A., 111, No. 47: 16676 (2014); doi:10.1073/pnas.1414215111
- Hyosung An, Touseef Habi, Smit Shah, Huili Gao, Miladin Radovic, Micah J. Green, and Jodie L. Lutkenhaus, Sci. Adv., 4, No. 3: 4652 (2018); doi:10.1126/sciadv.aaq0118
- Yina Yang, Liangjing Shi, Zherui Cao, Ranran Wang, and Jing Sun, Adv. Funct. Mater, 29, No. 14: 1807882 (2019); doi:10.1002/adfm.201807882
- Hui Liao, Xuelin Guo, Pengbo Wan, and Guihua Yu, Adv. Funct. Mater., 29, No. 39: 1904507 (2019); doi:10.1002/adfm.201904507
- Han Li and Zhaoqun Du, ACS Appl. Mater. Interfaces, 11, No. 49: 45930 (2019); https://doi.org/10.1021/acsami.9b19242
- Yanan Ma, Nishuang Liu, Luying Li, Xiaokang Hu, Zhengguang Zou, Jianbo Wang, Shijun Luo, and Yihua Gao, Nat. Commun., 8, No. 1207 (2017); doi:10.1038/s41467-017-01136-9
- Ying Guo, Mengjuan Zhong, Zhiwei Fang, Pengbo Wan, and Guihua Yu, NanoLetters, 19, No. 2: 1143 (2019); https://doi.org/10.1021/acs.nanolett.8b04514
- Hao Zhuo, Yijie Hu, Zehong Chen, Xinwen Peng, Linxiang Liu, Qingsong Luo, Jiwang Yi, Chuanfu Liu, and Linxin Zhong, J. Mater. Chem. A, 7: 8092 (2019); doi:10.1039/C9TA00596J
- Kang Wang, Zheng Lou, Lili Wang, Lianjia Zhao, Shufang Zhao, Dongyi Wang, Wei Han, Kai Jiang, and Guozhen Shen, ACS Nano, 13, No. 8: 9139 (2019); doi:10.1021/acsnano. 9b03454
- Xiao-Peng Li, Yue Li, Xiaofeng Li, Dekui Song, Peng Min, Chen Hu, Hao-Bin Zhang, Nikhil Koratkar, and Zhong-Zhen Yu, J. Coll. Interface Sci., 542: 54 (2019); doi:10.1016/j.jcis.2019.01.123
- Ying Guo, Mengjuan Zhong, Zhiwei Fang, Pengbo Wan, and Guihua Yu, Nano Letters, 19, No. 2: 1143 (2019); doi:10.1021/acs.nanolett.8b04514
- Zehong Chen, Yijie Hu, Hao Zhuo, Linxiang Liu, Shuangshuang Jing, Linxin Zhong, Xinwen Peng, and Run-cang Sun, Chem. Mater, 31, No. 9: 3301 (2019); doi:10.1021/acs.chemmater.9b00259
- Han Lin, Shanshan Gao, Chen Dai, Yu Chen, and Jianlin Shi, J. Am. Chem. Soc., 139, No. 45: 16235 (2017); doi:10.1021/jacs.7b07818
- Zhong Ma, Ping Chen, Wen Cheng, Kun Yan, Lijia Pan, Yi Shi, and Guihua Yu, Nano Lett., 18, No. 7: 4570 (2018); doi:10.1021/acs.nanolett.8b01825
- Ruma Ghosh, Arvinder Singh, Sumita Santra, Samit K. Ray, Amreesh Chandra, and Prasanta K. Guha, Actuat. B Chem., 205: 67 (2014); doi:10.1016/j.snb.2014.08.044
- Xue-fang Yu, Yanchun Li, Jian-Bo Cheng, Zhen-Bo Liu, Qing-Zhong Li, Wen-Zuo Li, Xin Yang, and Bo Xiao, ACS Appl. Mater. Interfaces, 7, No. 24: 13707 (2015); doi:10.1021/acsami.5b03737
- Bo Xiao, Yan-chun Li, Xue-fang Yu, and Jian-bo Cheng, Sens. Actuat. B Chem., 235: 103 (2016); doi:10.1016/j.snb.2016.05.062
- Sang Hoon Lee, Wonsik Eom, Hwansoo Shin, Rohan B. Ambade, Jae Hoon Bang, Hyoun Woo Kim, and Tae Hee Han, ACS Appl. Mater. Interfaces, 12, No. 9: 10434: (2020); doi:10.1021/acsami.9b21765
- Seon Joon Kim, Hyeong-Jun Koh, Chang E. Ren, Ohmin Kwon, Kathleen Maleski, Soo-Yeon Cho, Babak Anasori, Choong-Ki Kim, Yang-Kyu Choi, Jihan Kim, Yury Gogotsi, and Hee-Tae Jung, ACS Nano, 12, No. 2: 986 (2018); doi:10.1021/acsnano.7b07460
- Eunji Lee, Armin VahidMohammadi, Young Soo Yoon, Majid Beidaghi, and Dong-Joo Kim, ACS Sens., 4, No. 6: 1603 (2019); doi:10.1021/acssensors.9b00303
- Feitian Ran, Tianlin Wang, Siyu Chen, Yuyan Liu, and Lu Shao, Appl. Surf. Sci., 511: 145627 (2020); http://doi.org/10.1016/j.apsusc.2020.145627
- Qixun Xia, Yulong Fan, Shiwen Li, Aiguo Zhou, Nanasaheb Shinde, Rajaram S. Mane, Diamond and Related Materials, 131: 109557: (2023); https://doi.org/10.1016/j.diamond.2022.109557
- L. Lorencova, T. Bertok, E. Dosekova, A. Holazova, D. Paprckova, A. Vikartovska, V. Sasinkova, J. Filip, P. Kasak, M. Jerigova, D. Velic, Kh. A. Mahmoud, and J. Tkac, Electrochimica Acta, 235: 471 (2017); DOI: 10.1016/j.electacta.2017.03.073
- S. Neampet, N. Ruecha, J. Qin, W. Wonsawat, O. Chailapakul, and N. Rodthongkum, Microchim. Acta, 186: 752 (2019); https://doi.org.10.1007/s00604-019-3845-3
- B. Xiao, Y.-C. Li, X.-F. Yu, and J.-B. Cheng, Sensors Actuators B Chem., 235: 103 (2016); http://doi.org.10.1016/j.snb.2016.05.062
- Ankita Sinha, Dhanjai, Huimin Zhao, Yujin Huang, Xianbo Lu, Jiping Chen, and Rajeev Jain, TrAC Trends in Analytical Chemistry, 105: 424 (2018); https://doi.org/10.1016/j.trac.2018.05.021
- Xu Chen, Xueke Sun, Wen Xu, Gencai Pan, Donglei Zhou, Jinyang Zhu, He Wang, Xue Bai, Biao Dong, and Hongwei Song, Nanoscale, 10: 1111 (2018); doi:10.1039/C7NR06958H
- R. B. Rakhi, Pranati Nayuk, Chuan Xia, and Husam N. Alshareef, Sci. Rep., 6: 36422 (2016); https://doi.org/10.1038/srep36422
- Menghui Lia, Liang Fang, Hua Zhou, Fang Wua, Yi Lu, Haijun Luo, Yuxin Zhang, and Baoshan Hu, Appl. Surf. Sci., 495: 143554 (2019); https://doi.org/10.1016/j.apsusc.2019.143554
- Jiushang Zheng, Bin Wang, Ailing Ding, Bo Weng, and Jiucun Chen, J. Electroanalyt. Chem., 816: 189 (2018); https://doi.org/10.1016/j.jelechem.2018.03.056
- Fen Wang, ChenHui Yang, Max Duan, Yi Tang, and JianFeng Zhu, Biosens. Bioelectron., 74: 1022 (2015); https://doi.org/10.1016/j.bios.2015.08.004
- Hui Liu, Congyue Duan, Chenhui Yang, Wanqiu Shen, Fen Wang, and Zhenfeng Zhu, Sens. Actuat. B Chem., 218: 60 (2015); https://doi.org/10.1016/j.snb.2015.04.090
- Xiaolei Zhu, Bingchuan Liu, Huijie Houa, Zhenying Huang, Kemal Mohammed, Zeinua, Long Huanga, Xiqing Yuan, Dabin Guo, Jingping Hu, and Jiakuan Yang, Electrochimica Acta, 248: 46 (2017); https://doi.org/10.1016/j.electacta.2017.07.084
- Asif Shahzad, Kashif Rasool, Waheed Miran, Mohsin Nawaz, Jiseon Jang, Khaled A. Mahmoud, and Dae Sung Lee, ACS Sust. Chem. Eng., 5: 11481 (2017); https://doi.org/10.1021/acssuschemeng.7b02695
|