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MXenes are a class of 2D material produced from the MAX phase structure, 
e.g., 3D atomic laminate Ti3AlC2; they have a combination of layered carbides 

and nitrides. They belong to a distinctive type of structured materials with 

better conductivity than metals, increased ionic conductivity, flexible me-
chanical properties, and being hydrophilic. MXenes can be structured to 

form nanoparticles, multi- and single-layered nanosheets, which exhibit 

large specific surface areas enhancing their efficiency of sensing in MXene 

sensors. In addition, they are capable of forming composites with other mate-
rials with ease. Their morphology enhances their mechanical flexibility and 

stretchability enabling them to have wide applications in energy-storage de-
vices, wearable sensors, and for electromagnetic shielding. Considering this, 

an attempt is made to review the recent advances in MXenes with emphasis 

on their applications in the area of wearable sensors that include pressure, 

strain, biochemical, temperature and gas sensing. 

Максени — це клас двовимірних матеріялів, виготовлених із MAX-
фазової структури, наприклад, тривимірного атомарного ламінату 

Ti3AlC2; вони містять комбінацію шаруватих карбідів і нітридів. Вони на-
лежать до особливого типу структурованих матеріялів з ліпшою провідні-
стю, ніж метали, підвищеною йонною провідністю, гнучкими механічни-
ми властивостями та гідрофільними. Максени можуть бути структуровані 
для формування наночастинок, багато- або одношарових нанолистів, які 
мають великі питомі площі поверхні, що підвищує їхню ефективність зо-
ндування в максенових сенсорах. Крім того, вони здатні з легкістю фор-
мувати композити з іншими матеріялами. Їхня морфологія підвищує їх-
ню механічну гнучкість і розтягливість (тобто еластичність), що уможли-
влює широко застосовувати їх у пристроях накопичення енергії, перенос-
них давачах, а також для електромагнетного екранування. У зв'язку з 

цим робиться спроба розглянути останні досягнення в дослідженнях мак-
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сенів з акцентом на застосуванні їх в області переносних давачів тиску та 

деформації, біохемічних, температурних і газових давачів. 

Key words: MXenes, gas sensor, temperature sensor, pressure sensor, bio-
sensor. 
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1. INTRODUCTION 

MXenes are (2D) two-dimensional nanomaterials first ascertained in 
2011 and are pronounced as ‘max-eens’. They are ceramics compris-
ing the big family of 2D materials. MAX phase was the bulk crys-
tal, from which MXenes are made of. Their inherent conductivity 
and volumetric capacitance is more than other 2D materials. This is 
due to their structure consisting of molecular sheets derived from 
the nitrides and carbides of titanium. MXenes are signified for 
their applications in various sectors like sensing, energy storage 
and medicine. The main interest in MXenes lies in the fact that this 
material could feasibly be structured with large millions of possible 
ordering of transition metals, carbon and nitrogen. We need to in-
vestigate stable arrangement. It is reported that still a large num-
ber of MXene compounds are likely to be discovered in near future 
[1]. The discovery of MXene started with ceramics known as MAX 
phases that consist of layered carbides and nitrides. These ceramics 
produced 3D materials, which, when substituted with Ti3AlC2 pow-
der in hydrofluoric acid, selectively removes aluminium. This chem-
ical process (exfoliation) yield 2D Ti3C2 nanosheets called MXene, 
which is similar to graphene with different properties. MXene was 
first demonstrated in 2011 by transforming the three-dimensional 
materials Ti3AlC2 representing MAX phase into a 2D material [2]. 
Figure 1 displays the journey of MXenes during the last decade. 
 The structure of MXenes emerged them to be distinctive with attrac-
tive features such as high conductivity, ionic conductivity and mechan-
ical flexibility as compared to other materials. The size, shape and 

structure of MXenes can be altered, so that to form nanoparticles, 
nanosheets of single- and multilayers exhibiting large and specific sur-
face areas, making them favourable for enhanced sensing. In addition, 
MXenes easily form composites with other materials. The structures of 

MXenes enhance their mechanical flexibility and stretchability making 

them feasible for wearable sensors (pressure, temperature, biochemical 
and gas sensors), energy storage and electromagnetic shielding. 
 MXenes are derived from MAX phases, whose formula is given as 
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Mn1AXn, where n1, …, 4; M is early d-block transition metal; A is 

main group sp-element (specifically groups 13 and 14); X is N or C atom. 
 They have edge-sharing structure with distorted XM6 octahedral 
loaded by single planar layers of A-group element [4]. Figure 2 dis-
plays 3D MAX phase structure. 
 MXenes can be derived from MAX phases through selective etch-
ing of A layers. Synthesis of MXenes effectively controls their mor-

 

Fig. 1. Journey of MXenes from (2011–2021) by courtesy of Ref. [3]. 

 

Fig. 2. Crystal structure of MAX phases [5]. 
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phology, influencing the sensory functions. Different preparation 
methods of MXenes are reported in Refs. [6, 7]. However, wet etch-
ing method is significant in case of sensors [8, 9], where the mor-
phology is altered through varying the quantity of etching solution, 
time of etching, ultrasonic time [10] and experimental temperature 
[11, 12]. Using this technique, various compositions of single and 
multilayered stacks of MXenes are obtained. Apart from various 
synthesis methods, being used [13–16] wet selective etching is pre-
ferred for fabrication of MXenes-based sensors. 

2. WEARABLE SENSORS 

Wearables are devices embedded into items worn on a body. Infor-
mation tracking on real time basis is one of the major applications 
in today’s life. They mainly use sensors, which comply with me-
chanical and sensing capabilities in robotics, monitoring of health 
and motion detection, etc. [18–20]. Based on the complexity of ob-
ject, flexible devices with accurate electrical output are required 
during daily movements [21], which might not be achieved with 
traditional electronic devices. In this regard, many researchers re-
ported various strategies to design microstructured devices instead 
of external circuit structural design [22]. 
 However, these strategies could not fill the gap between mechani-
cal flexibility and electrical performance leading to develop various 
wearable applications. 
 As mentioned, MXenes proved to be favourable as wearable sen-
sors. Figure 3 shows the application of MXenes in various sensors. 

  
a      b 

Fig. 3. (a) MXenes-based sensors [17]; (b) MXenes in various sensors in-
cluding their area of applications [23]. 
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2.1. Physical Sensors 

A device capable of sensing physical quantities (pressure, tempera-
ture, etc.), converting it into a signal that can be analysed by an ob-
server is known as physical sensor. It is evident that different 
nanostructured materials are used to construct various physical 
sensors. This include nanowires, nanoparticles, nanoribbons, nano-
tubes and graphene. However, MXenes prepared by chemical liquid 
etching are found to be superior as compared to graphene with ex-
cellent properties and ease in chemical modification [24]. MXenes 
are being used in stress sensors for detection of tiny shaped varia-
bles. Their accordion-like shaped structure can be used can be used 
in piezoresistive sensors. As mentioned earlier, enhanced sensor 
performance, due to mixing with other materials, make MXenes 
more significant as physical sensors. 

2.2. Strain Sensors 

A device capable of converting the applied force into variable re-
sistance is known as strain sensor. It can be used to convert force, 
pressure, tension, weight, etc. into a variable resistance and can be 
measured [25]. Application of external force on the sensor cracks 
the internal conductive materials, causing the electrical characteris-
tics to change accordingly. These materials are made of closely 
stacked 2D sheets with van der Waals forces existing between adja-
cent sheets. On application of an external stress, the sheets get 
large cracks whose dimensions are proportional to applied stress. 
Blockage of conductive on application of large force limits the sta-
bility and sensing range. To avoid this drawback, different phases 
of 3D materials with different dimensions are added into 2D mate-
rials. This could achieve a sensitivity of 64.6 for 0–30% strain and 
772.60 for 40–70% strain. Similarly, silver nanowire combined 
with Ti3C2Tx with introduction of dopamine and nickel ions lead to 
strain sensor [26]. This yielded a sensor with GF 256.1, 433.3, 
1160.8, 2209.1, and 8767.4 in strain ranges of 0–15%, 15%–35%, 
35%–60%, 60%–77% and 77%–83%, respectively. It is reported 
that highest sensing range is above fifty percent with sensitivity 
greater than 200, which exceeds many of the reported strain sen-
sors [27]. It is reported that one-dimensional materials if used to 
connect MXenes sheets, make the device enhance sensitivity and 
strain sensing range [28]. In a similar way, composite films with 
Ti3C2Tx nanosheets derived from Ti3C2Tx MAX phase through 
MXenes and poly [29] reported conductivity up to 2 000 S/m. By 
altering the morphology of Ti3C2Tx materials through alteration of 
etchant, etching time and ultrasonic time, Ti3C2Tx nanoparticles and 

https://www.sciencedirect.com/topics/engineering/nanowire
https://www.sciencedirect.com/topics/engineering/nanoparticle
https://www.sciencedirect.com/topics/chemistry/nanoribbon
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nanosheets increased the synergistic effect. The maximum sensing 
range of the sensor is more than fifty percent and suitable for the 
whole body [30]. To obtain the MXenes for strain sensing, combina-
tion of Ti3C2Tx with hydrogels is used and leads to antifreeze, self-
healing and high-sensitivity (GF44.85) [31]. 
 Apart from that we discussed above, zero dimensional silver na-
noparticles were loaded on two-dimensional MXene nanosheets and 
are compounded with one-dimensional silver nanowires. This meth-
od is reported to ensure high GF and continuity at large strain of 
yarn (200%). Figure 4 represents process, in which aluminium is 
etched directly by hydrofluoric acid (Fig. 4, a), adding DMSO solu-
tion to delaminate MXene nanoblocks into nanosheets (Fig. 4, b) and 
silver nanoparticles [32]. 

2.3. Pressure Sensors 

A device capable of sensing pressure and converts it into an electric 

signal proportional to the applied pressure. Various pressure sensors 

are developed for transient electronic skins, flexible displays, intelli-

 

Fig. 4. Experimental process of HF etching [32]. 



 APPLICATIONS OF 2D MATERIALS (MXenes) IN SENSORS: A MINIREVIEW 835 

gent robotics, real-time sensing performance decreasing electronic 

waste and environmental impact. However, the real challenge in 

achieving a high sensitivity and high range of sensing, quick response, 

durability was intact. Apart from conventional techniques, sensors 

developed with MXenes are proved to exhibit high GF values. A sensor 

with GF 180.1–94.8 and 94.8–45.9 in the range of 0.19–0.82 and 

0.82–2.13% was reported [33]. This sensor was used to explore human 

activities like throat swallowing, eye blinking, etc. The sensor has a 

shape of musical instrument accordion when multiple layers of 

MXenes were used. It is a piezoresistive sensor, in which the applied 

pressure on the device is converted to by material deformation. In a 

similar way, high sensitive degradable pressure sensor with low detec-
tion limit, broad range, fast response (11 ms), low power consumption 

and excellent degradability was fabricated. This is used to monitor the 

health of patients duplicating E-skin in clinical diagnoses, personal 
healthcare monitoring and artificial skins. 
 Figure 5 demonstrate the steps involved in fabricating MXene 

 
a 

 
b 

Fig. 5. (a) Steps involved in fabrication of flexible wearable transient pres-
sure sensors with MXene nanosheets [34]; (b) flexible wearable transient 
pressure sensor [34]. 
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nanosheets into flexible wearable transient pressure sensor (Fig. 5, 
a) and its photograph (Fig. 5, b). 
 Due to fragility of MXenes, they cannot sustain high pressure. 
This drawback can be overcome by mixing them with high strength 
materials that supports stress on the sensor. MXenes based flexible 
piezo-resistive sensors are mainly of two types given by aerogel and 
elastic matrix sensors. Aerogels exhibit high porosity and super 
elasticity, which signify them for fabrication of flexible piezoresis-
tive sensors. In this context, various pressure sensors with this 
principle have been reported [35–39]. 

2.4. Chemical Sensors 

These are devices capable for converting the property of a particu-
lar analyte into a measurable signal, which is proportional to ana-
lyte concentration. It is capable for recognizing the molecule of the 
analyte through selection by converting the response into an electri-
cal signal. These sensors are capable of measuring and analysing 
chemical compounds. The property of MXenes being hydrophilic in 
nature made them significant to be used in wearable sensors. They 
can adsorb biomolecules and gas molecules by controlling the mor-
phology and surface modification, hence bringing a change in their 
electrical properties. In MXenes, M-layer elements are transition 
metals that include Ti, Nb, Ta, etc., which are inert to biological 
organisms. This characteristic of inertness equips compounds of 
MXenes excellent biocompatibility. It is shown that MXenes can be 
eliminated from mice through degradation [40]. 

2.5. Gas Sensors 

These are devices, which detect the presence and concentration of 
hazardous vapours and gases that include explosive gases, VOCs, 
humidity, etc. Gas sensors are essentially required to sense envi-
ronmental parameters, which is a challenging task in wearable sen-
sors [41]. MXenes has a suitable surface structure for adsorption of 
different gas molecules, which affects its overall conductivity [42]. 
MXenes-based composite in sensing of gases such as H2, O2, CO2, 
CH4, NH3, etc. was demonstrated [43]. First principles simulation 
was used to infer that Ti2C monolayer with O2 termination was more 
suitable for NH3 than other gas molecules. Similarly, reaction be-
tween NH3 and O terminated semiconducting MXenes with different 
charge states was reported using the same principle [44]. TiC2Tx 
embedded flexible polyimide platforms using solution-casting meth-
od lead to high performance sensor for detection of NH3. Ti3C2Tx–
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graphene hybrid fibres made by scalable wet-spinning process exhib-
ited excellent mechanical and high electrical conductivity improved 
NH3 sensing significantly [45]. Ti3C2Tx MXenes films as metallic 
channels for volatile organic compounds (VOCs) gas sensors were 
demonstrated with high signal-to-noise ratio [46]. Flexible polyi-
mide substrate with V2CTx solution formed a gas sensor with high 
sensitivity toward non-polar gas [47]. 
 It is reported that literature related to MXenes based gas sensors 
was limited. Generally, MXenes in combination with certain gas-
sensitive materials forming composite material can be used as gas 
sensors with high performance. These sensors contain vacant spaces 
in the middle layers of MXenes, which adhere to gas molecules [48]. 
 Table shows the gas sensitivity exhibited by various MXene-based 
composite materials. 
 Different types of gas sensors using MXenes were reported such 
as hydrogen peroxide (H2O2) sensor up to a concentration of 0.7 nM 
with response time of nearly 10 seconds [50]. In a similar way, a 
Pt/PANI/MXene nanocomposite was used to fabricate H2O2 sensor, 
which demonstrated a magnified current response and low detection 
of 1.0 µM [51]. Similarly, NH3 gas was sensed with the help of 
Mxene-based sensors. The reaction between NH3 and O-terminal 
MXenes with various charges was studied to know the adsorption of 
NH3 molecules on M2CO2 with evident electron transfer [52]. In this 
context, sensors reported for detection of ethanol, acetone along 
with NH3 are of importance [53]. Even though merging of MXene 
materials with other gas-sensitive materials lead to development of 

TABLE. Gas sensitivity exhibited by various MXene-based composite mate-
rials [49]. 

Material Gas 
Operating 

temperature, C 
Response time 

Gas response, 
Rg/Ra  

Ti3C2Tx acetone RT NA 0.125/200 ppm 
 

W18O49/Ti3C2Tx acetone 300 4.6 s/20 ppm 11.6/20 ppm 
 

CuO/Ti3C2Tx MXene toluene 250 270 s/50 ppm 11.4/50 ppm 
 

MXene/SnO2 NH3 RT 36 s/50 ppm 40/50 ppm 
 

MXene/TiO2 
Li–V2CTx 
HF–V2CTx 
Cl–Ti3C2Tx 

NH3 
NH3 
CH₄ 
NH3 

RT 
RT 
RT 
RT 

60 s/10 ppm 
41 s/50 ppm 

169 s/500 ppm 
98 s/500 ppm 

3.1/10 ppm 
3.41/500 ppm 
1.49/500 ppm 
13.2/500 ppm 

 

Co3O4@PEI/Ti3C2Tx NOx RT 27.9 s/30 ppb N/A 
 

MXene/Co3O4 HCHO RT 83 s/10 ppm 9.2/10 ppm 
 

SnO–SnO2/Ti3C2Tx acetone RT 18 s/100 ppm 12.1/100 ppm 
 

Ni(OH)2/Ti3C2Tx NH3 RT 78 s/50 ppm 6.2/10 ppm 
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high-performance gas sensors, they are less and limited to NH3 de-
tection and certain VOC gases. 

2.5. Biosensors 

These are devices capable of measuring chemical or biological reac-
tions through signal generation proportional to analyte concentra-
tion. They measure and characterize organic materials. These sen-
sors include enzyme sensors and DNA analysis systems. Recently, 
MXenes are proved as strong intracellular pH sensors. pH-sensitive 
Ti3C2 quantum dots were fabricated [54] and used to develop a ratio 
metric photoluminescence probes that monitor intracellular pH. 
This can be applied to develop wearable fluorescent nanosensors. 
Apart from intracellular pH monitoring, MXenes can be used to de-
tect glucose and phenol molecules. A biosensor made from gold and 
MXenes composite for detection of glucose was reported [55]. The 
device exhibited good range of glucose detection from 0 to 18 mM. 
Three-dimensional porous composite of MXenes for non-enzymatic 
glucose sensor was fabricated and reported in Ref. [56]. Similarly, 
MXenes/DNA/Pd/Pt material was used for developing sensitive DA 
sensor [57]. A mediator free biosensor was fabricated through TiO2–
Ti3C2 nanocomposite of accordion shape that disable haemoglobin 
was developed [58]. A sensing platform was formed by loading TiO2 
nanoparticles on Ti3C2 substrate suitable for enzyme immobilization 
[59]. Studies on electrochemical response of MXenes for detection 
of Cd2, Pb2, Cu2, and Hg2 for new platform were proposed to de-
tect heavy metal ions [60]. Apart from detection of heavy metal 
ions, MXenes nanosheets are capable of removing heavy metals like 
copper, lithium, sodium, etc. [61]. 

3. CONCLUSION 

MXenes and their applications in the field of wearable sensors were 
reviewed. The ease, with which the morphology of MXenes is con-
trolled, makes them significant in the field of wearable sensors. 
Their mechanical properties, conductivity and hydrophilicity play 
key role in their applications. Different sensors with MXenes 
proved to be exhibiting high sensing performance with good GF 
values. Reviewing the lead taken by MXenes in the field of sensors, 
new sensing devices may be fabricated with combination of various 
materials and MXenes. This combination may improve synergistic 
effect between various materials and MXenes leading to efficient 
sensors with more response range and sensitivity. At the same time, 
it is noteworthy to realize the role of MXenes based sensors in med-
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ical detection, wearable devices and electronic skin as many prob-
lems persist. Synthesis of MXenes poses toxicity to environment, 
which need to be addressed. In addition, human body will be affect-
ed due to HF etching. In view of this, safety measures need to be 
considered. As linear induction cannot be realized for high strain in 
practical MXenes-based sensors, it affects sensors program setting. 
Hence, the microstructures of MXenes need to be redesigned in im-
proving the linearity of the sensor. Literature shows that MXenes 
used in biomedical applications are biocompatible but no references 
of systematic evaluation. Hence, lot of understanding the surface 
chemistry of MXenes and its synthesis and their applications in 
wearable sensors is essential. Hence, it is of prime importance to 
explore ways to improve the role of MXenes for further explora-
tion. 
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