Download the full version of the article (in PDF format)
O. M. Bordun, B. O. Bordun, I. I. Medvid, M. V. Protsak, K. L. Biliak, I. Yo. Kucharskyy, D. M. Maksymchuk, I. M. Kofliuk, and D. S. Leonov
Surface Morphology of (La0.06Ga0.94)2O3:Eu Thin Films
593–603 (2023)
PACS numbers: 61.72.Mm,68.35.Ct,68.37.Ps,68.55.A-,68.55.J-,81.15.Cd,81.15.Gh
Thin films of (La0.06Ga0.94)2O3:Eu are obtained by radio-frequency (RF) ion-plasma sputtering in an argon atmosphere on single-crystal NaCl and amorphous v-SiO2 substrates. The study of the surface morphology of thin films by atomic force microscopy (AFM) shows that the average diameter of crystallites forming the film increases from 23 nm to 48 nm, when there is switching from NaCl to v-SiO2 substrates. The heat treatment of films on v-SiO2 substrates in an argon atmosphere leads to the increase in the average grain diameters to 68 nm and, accordingly, the root-mean-square roughness from 0.5 nm to 6.1 nm. The analysis of the distributions of crystallites by diameter and volume is carried out, and it is proposed that, in the process of RF sputtering, secondary grains grow, and in the process of high-temperature heat treatment, secondary and tertiary grains grow.
Key words: gallium oxide, europium activator, thin films, crystallites, surface morphology.
https://doi.org/10.15407/nnn.21.03.593
References
- K. H. Choi and H. C. Kang, Materials Letters, 123: 160 (2014); https://doi.org/10.1016/j.matlet.2014.03.038
- Lingyi Kong, Jin Ma, Caina Luan, Wei Mi, and Yu Lv, Thin Solid Films, 520, No. 13: 4270 (2012); https://doi.org/10.1016/j.tsf.2012.02.027
- A. K. Saikumar, Sh. D. Nehate and K. B. Sundaram, ECS J. of Solid State Science and Technol., 8, No. 7: Q3064 (2019); https://doi.org/10.1149/2.0141907jss
- M. Higashiwaki, AAPPS Bulletin, 32: 3 (2022); https://doi.org/10.1007/s43673-021-00033-0
- O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy and I. I. Medvid, J. Appl. Spectrosc., 86, No. 6: 1010 (2020); https://doi.org/10.1007/s10812-020-00932-4
- C. V. Ramana, R. S. Vemuri, V. V. Kaichev, V. A. Kochubey, A. A. Saraev, and V. V. Atuchin, ACS Appl. Mater. Interfaces, 3: 4370 (2011); https://doi.org/10.1021/am201021m
- N. Pushpa, M. K. Kokila, and K. R. Nagabhushana, Materials Letters: X, 18: 100205 (2023); https://doi.org/10.1016/j.mlblux.2023.100205
- Kevil Shah, K. V. R. Murthy, and B. S. Chakrabarty, Results in Optics, 11: 100413 (2023); https://doi.org/10.1016/j.rio.2023.100413
- I. O. Bordun, O. M. Bordun, I. Yo. Kukharskyy, and Zh. Ya. Tsapovska, Acta Physica Polonika A, 133, No. 4: 914 (2018); https://doi.org/10.12693/APhysPolA.133.914
- J. Lakde, Ch. M. Mehare, K. K. Pandey, N. S. Dhoble, and S. J. Dhoble, J. of Physics: Conference Series, 1913: 01229 (2021); https://doi.org/10.1088/1742-6596/1913/1/012029
- Sh. Matsumoto, T. Watanabe, and A. Ito, Sensors and Materials, 34, No. 2: 669 (2022); https://doi.org/10.18494/SAM3698
- B. N. Rao, P. T. Rao, Sk. E. Basha, D. S. L. Prasanna, K. Samatha, and R. K. Ramachandra, J. Mater. Sci.: Mater. Electron., 34: 955 (2023); https://doi.org/10.1007/s10854-023-10341-w
- K. Wasa, M. Kitabatake, and H. Adachi, Thin Film Materials Technology: Sputtering of Compound Materials (New York: William Andrew Inc. Publishing: 2004).
- O. M. Bordun, B. O. Bordun, I. J. Kukharskyy, I. I. Medvid, O. Ya. Mylyo, M. V. Partyka, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 17, Iss. 1: 123 (2019) (in Ukrainian); https://doi.org/10.15407/nnn.17.01.123
- C. V. Thompson, Sol. State Phys., 55: 269 (2001); https://doi.org/10.1016/S0081-1947(01)80006-0
- C. V. Thompson, J. Appl. Phys., 58: 763 (1985); https://doi.org/10.1063/1.336194
- O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, I. I. Medvid, I. I. Polovynko, Zh. Ya. Tsapovska, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 19, Iss. 1: 159 (2021); https://doi.org/10.15407/nnn.19.01.159
- J. E. Palmer, C. V. Thompson, and Henry L. Smith, J. Appl. Phys., 62, No. 6: 2492 (1987); http://dx.doi.org/10.1063/1.339460
- O. M. Bordun, I. O. Bordun, I. M. Kofliuk, I. Yo. Kukharskyy, I. I. Medvid, Zh. Ya. Tsapovska, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 1: 91 (2022); https://doi.org/10.15407/nnn.20.01.091
|