Issues

 / 

2023

 / 

vol. 21 / 

Issue 2

 



Download the full version of the article (in PDF format)

Enas Yousef, Wardeh Khalil, Abd Alhadi Dallh, and Joumaa Merza
Synthesis and Characterization of Two Ligand Polydentals and Their Complexes with Cobalt(²²) and Copper(²I) Derived from Pyridine-2,6-Dicarbohydrazide and Studying the Biological Activity of Complexes
0461–0475 (2023)

PACS numbers: 81.07.Nb, 81.16.Fg, 87.19.xb, 87.64.Cc, 87.64.kj, 87.64.km, 87.85.Rs

Two tridentate-type Schiff-bases’ ligands: 2,6-bis[(salicylidene) hydrazinocarbonyl] pyridine (L) and 2,6-bis[(3-methoxysalicylidene) hydrazinocarbonyl] pyridine (L´) are synthesized from the reaction of pyridine-2,6-dicarbohydrazide with salicylaldehyde and 3-methoxy salicylaldehyde. The co-ordination behaviour of the (L) and (L´) towards Cu(II) and Co(II) ions is investigated. The reaction of the Schiff-base ligands (L) and (L´) with cobalt(II) and copper(II) ions in 1:3 molar ratio affords polynuclear metal complexes. The shifts of the some IR-bands’ spectra of synthesized complex in the selected vibrational bands in FT-IR indicate that Schiff bases behave as trilydentate ligands and co-ordinate to metal ions from phenolic oxygen atoms, amide and azomethine nitrogen atoms. The structure of the metal complexes exhibits octahedral arrangements. The antibacterial activity of the ligand (L) and its metal complexes against two bacterial species is studied. The Co(II) complex indicates a good inhibition activity. The structures of the ligands are elucidated by FT-IR, 1H-NMR, and UV–Vis electronic spectra. The characterization and structure elucidation of the complexes are achieved by FT-IR, UV–Vis electronic spectra.

Key words: pyridine-2,6-dicarbohydrazide, Schiff bases, polynuclear complexes, polydentate ligands.

https://doi.org/10.15407/nnn.21.02.461

References
  1. C. Pichon, P. Dechambenoit, and R. Clerac, Polyhedron, 52: 476 (2013); https://doi.org/10.1016/j.poly.2012.08.048
  2. S. M. Abdallah, G. G. Mohamed, M. A. Zayed, and M. S. Abou El-Ela, Spectrochim. Acta A, 73: 833 (2009); https://doi.org/10.1016/j.saa.2009.04.005
  3. S. Chattopadhyay, M. G. B. Drew, and A. Ghosh, Eur. J. Inorg. Chem., 2008: 1693 (2008); https://doi.org/10.1002/ejic.200701025
  4. M. M. Omar, G. G. Mohamed, and A. M. Hindy, J. Therm. Anal. Calorim., 86: 315 (2006); https://doi.org/10.1007/s10973-006-7095-3
  5. K. P. Balasubramanian, K. Parameswari, V. Chinnusamy, R. Prabhakaran, and K. Natarajan, Spectrochimica. Acta. Part A, 65: 678 (2006); https://doi.org/10.1016/j.saa.2005.12.029
  6. M. S. Karthikeyan, D. J. Prasad, B. Poojary, K. S. Bhat, B. S. Holla, and N. S. Kumari, Bioorg. Med. Chem., 14: 7482 (2006); https://doi.org/10.1016/j.bmc.2006.07.015
  7. K. Singh, M. S. Barwa, and P. Tyagi, Eur. J. Med. Chem., 41: 147 (2006); https://doi.org/10.1016/j.ejmech.2005.06.006
  8. A. Datta, N. K. Karan, S. Mitra, and G. Rosair, Z. Naturforsch., 57b: 999 (2002).
  9. F. A. Carey, Organic Chemistry (New York: McGraw-Hill: 2000).
  10. P. Pathak, V. S. Jolly, and K. P. Sharma, Oriental J. Chem., 16: 161 (2000).
  11. H. Xu and X. Zeng, Bioorganic Medicinal Chemistry Letters, 20: 4193 (2010); https://doi.org/10.1016/j.bmcl.2010.05.048
  12. S. Samadhiya and A. Halve, Oriental. J. Chem., 17: 119 (2001).
  13. M. Tonelli, I. Vazzana, B. Tasso, V. Boido, F. Sparatore, M. Fermeglia, M. S. Paneni, P. Posocco, S. Pricl, P. Colla, C. Ibba, B. Secci, G. Collu, and R. Loddo, Bioorg. Med. Chem., 17: 4425 (2009); https://doi.org/10.1016/j.bmc.2009.05.020
  14. P. Rani, V. K. Srivastava, and A. Kumar, Eur. J. Med. Chem., 39: 449 (2004); https://doi.org/10.1016/j.ejmech.2003.11.002
  15. F. Hamon, F. Djedaini-Pilard, F. Barbot, and C. Len, Tetrahedron, 65: 10105 (2009); https://doi.org/10.1016/j.tet.2009.08.063
  16. R. A. Lal, S. Adhikari, A. Kumar, J. Chakraborty, and S. Bhaumik, Synth. React. Inorg. Met.-Org. Chem., 32: 81 (2002); https://doi.org/10.1081/SIM-120013148
  17. V. B. Rana, S. K. Sahni, and S. K. Sangal, J. Inorg. Nucl. Chem., 41: 1498 (1979); https://doi.org/10.1016/0022-1902(79)80223-7
  18. T. F. Zafiropoulos, J. C. Plakatouras, and S. P. Perlepes, Polyhedron, 10: 2405 (1991); https://doi.org/10.1016/S0277-5387(00)86202-6
  19. X. Chen, S. Zhan, C. Hu, Q. Meng, and Y. Liu, J. Chem. Soc. Dalton Trans., Iss. 2: 245 (1997); https://doi.org/10.1039/a603850f
  20. S. M. Jadhav, V. A. Shelke, S. G. Shankarwar, A. S. Munde, and T. K. Chondhekar, Journal of Saudi Chemical Society, 18: 27 (2014); https://doi.org/10.1016/j.jscs.2011.05.010
  21. R. Vadavi et al., Spectrochimia Acta Part A, 79: 348 (2011); https://doi.org/10.1016/j.saa.2011.03.011
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement