Issues

 / 

2023

 / 

vol. 21 / 

Issue 2

 



Download the full version of the article (in PDF format)

O. M. Bordun, V. G. Bihday, ². Yo. Kukharskyy, ². ². Medvid1, ². Ì. Kofliuk, I. Yu. Khomyshyn, Zh. Ya. Tsapovska, and D. S. Leonov
Surface Morphology of Thin ZnGa2O4 Films Obtained by Different Methods
0403–0411 (2023)

PACS numbers: 61.46.Hk, 61.72.Ff, 61.72.Mm, 68.35.Ct, 68.37.Ps, 68.55.J-, 81.15.Cd

Thin films of ZnGa2O4 are obtained by the method of discrete thermal evaporation and radio-frequency (RF) ion–plasma sputtering. Studies of the surface morphology of the obtained films by atomic force microscopy (AFM) show that the transition from discrete thermal evaporation to RF sputtering leads to increases in the average grain diameters by a factor of two and in grain heights by more than a factor of three. As established, the distribution of grains in terms of their diameters is multimodal and has several centres, which in both methods of preparation correlate as small integers. This indicates the growth of small grains among themselves with the formation of large grains.

Key words: zinc gallate, thin films, nanocrystallites.

https://doi.org/10.15407/nnn.21.02.403

References
  1. L. Zou, X. Xiang, M. Wei, F. Li, and D. G. Evans, Inorg. Chem., 47, No. 4: 1361 (2008); https://doi.org/10.1021/ic7012528
  2. W. Zhang, J. Zhang, Yu. Li, Z. Chen, and T. Wang, Appl. Surf. Sci., 256, No. 14: 4702 (2010); https://doi.org/10.1016/j.apsusc.2010.02.077
  3. J. S. Kim, J. S. Kim, T. W. Kim, H. L. Park, Yo. G. Kim, S. K. Chang, and S. D. Han, Solid State Commun., 131, No. 8: 493 (2004); https://doi.org/10.1016/j.ssc.2004.06.023
  4. O. M. Bordun, V. G. Bihday, and I. Yo. Kukharskyy, J. Appl. Spectrosc., 80, No. 5: 721 (2013); https://doi.org/10.1007/s10812-013-9832-2
  5. M. Orita, M. Takeuchi, H. Sakai, and H. Tanji, Jpn. J. Appl. Phys., 34, No. 11B: L1550 (1995); https://doi.org/10.7567/JJAP.34.L1550
  6. Ph. D. Rack, J. J. Peterson, M. D. Potter, and W. Park, J. Mater. Res., 16, No. 5: 1429 (2001); https://doi.org/10.1557/JMR.2001.0199
  7. P. Dhak, U. K. Gayen, S. Mishra, P. Pramanik, and A. Roy, J. Appl. Phys., 106, No. 6: 063721 (2009); https://doi.org/10.1063/1.3224866
  8. O. M. Bordun, I. I. Kukharskii, T. M. Yaremchuk, and S. I. Gaidai, J. Appl. Spectosc., 71, No. 3: 382 (2004); https://doi.org/10.1023/B:JAPS.0000039965.10766.c8
  9. Z. Chi, T. Tchelidze, C. Sartel, T. Gamsakhurdashvili, I. Madaci, H. Yamano, V. Sallet, Y. Dumont, A. Perez-Tomas, F. Medjdoub, and E. Chikoidze, J. Phys. D: Appl. Phys., 56: 105102 (2023); https://doi.org/10.1088/1361-6463/acbb14
  10. A. K. Singh, Ch.-Ch. Yen, and D.-S. Wuu, Results in Physics, 33: 105206 (2022); https://doi.org/10.1016/j.rinp.2022.105206
  11. O. M. Bordun, I. Yo. Kukharskyy, and V. G. Bihday, J. Appl. Spectrosc., 78, No. 6: 922 (2012); https://doi.org/10.1007/s10812-012-9555-9
  12. V. Bondar, L. Akselrud, M. Vasyliv, M. Grytsiv, Yu. Dubov, S. Popovich, V. Davydov, I. Kucharsky, and N. Lutsyk, Functional Materials, 6, No. 3: 510 (1999).
  13. B. A. Movchan and A. V. Demchychyn, Fiz. Met. Metalloved., 28, No. 4: 654 (1969) (in Russian).
  14. I. Heyvaert, J. Krim, C. Van Haesendonck, and Y. Bruynseraede, Phys. Rev. E, 54, No. 1: 349 (1996); https://doi.org/10.1103/PhysRevE.54.349
  15. K. L. Ekinci and J. M. Valles, Acta Mater., 46, No. 13: 4549 (1998); https://doi.org/10.1016/S1359-6454(98)00145-1
  16. J. G. Amar, Phys. Rev. B, 54, No. 20: 14742 (1996); https://doi.org/10.1103/PhysRevB.54.14742
  17. R. W. Smith and D. J. Srolovitz, J. Appl. Phys., 79, No. 3: 1448 (1996); https://doi.org/10.1063/1.360983
  18. B. S. Bunnik, C. de Hoog, E. F. C. Haddeman, and B. J. Thijsse, Nucl. Instrum. and Meth. Phys. Res. B, 187, No. 1: 57 (2002); https://doi.org/10.1016/S0168-583X(01)00849-7
  19. V. E. Yurasova and V. A. Eltekov, Vacuum, 32, No. 7: 399 (1982); https://doi.org/10.1016/0042-207X(82)94064-7
  20. B. S. Danilin, Primenenie Nizkotemperaturnoy Plazmy Dlya Naneseniya Tonkikh Plyonok [The Use of Low-Temperature Plasma for the Deposition of Thin Films] (Moskva: Ehnergoatomizdat: 1989) (in Russian).
  21. C. V. Thompson, Solid State Physics (Eds. H. Ehrenreich and F. Spaepen) (Academic Press: 2001).
  22. C. V. Thompson, J. Appl. Phys., 58, No. 2: 763 (1985); https://doi.org/10.1063/1.336194
  23. O. M. Bordun, I. O. Bordun, I. M. Kofliuk, I. Yo. Kukharskyy, I. I. Medvid, Zh. Ya. Tsapovska, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 1: 91 (2022); https://doi.org/10.15407/nnn.20.01.091
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement