Issues

 / 

2023

 / 

vol. 21 / 

Issue 2

 



Download the full version of the article (in PDF format)

I. P. Shatskyi, M. V. Makoviichuk, and L. Ya. Ropyak
Equilibrium of Laminated Cu/Ni/Cr Coating Under Local Load
0379–0389 (2023)

PACS numbers: 46.55.+d, 46.70.De, 62.20.Qp, 62.23.Kn, 68.35.Gy, 81.40.Jj, 81.70.Bt

The engineering methodology for calculating the stress–strain state and evaluating the strength of a three-layer chromium–nickel–copper coating of flat part under the action of the local load is developed. A pair of hard chromium and nickel layers is considered as a piecewise-homogeneous plate; the malleable copper layer is subject to Winkler’s hypothesis of the proportionality between stress and displacement. The stress distribution in the layered coating is studied, and the safety factor is determined depending on the mechanical properties and thickness of the components. In general, as established, the limit state of an inhomogeneous coating could be determined not by the maximum equivalent stress, but by the minimum of the safety factor.

Key words: nanocomposite coatings, chrome plating, nickel plating, copper plating, local load, stress state, strength.

https://doi.org/10.15407/nnn.21.02.379

References
  1. M. O. Vasyliev, B. M. Mordyuk, S. I. Sidorenko, S. M. Voloshko, A.P. Burmak, and M. V. Kindrachuk, Metallofiz. Noveishie Tekhnol., 38, No. 4: 545 (2016); https://doi.org/10.15407/mfint.38.04.0545
  2. V. ². Kyryliv, V. ². Gurey, Î. V. Maksymiv, ². V. Hurey, andY. Î. Kulyk, Materials Science, 57, No. 3: 422 (2021); https://doi.org/10.1007/s11003-021-00556-9
  3. V. V. Shyrokov, K. B. Vasyliv, Z. A. Duryahina, H. V. Laz’ko, and N. B. Rats’ka, Materials Science, 45, No. 4: 473 (2009); https://doi.org/10.1007/s11003-010-9204-5
  4. F. I. Danilov, V. S. Protsenko, V. O. Gordiienko, S. C. Kwon, J. Y. Lee, and M. Kim, Applied Surface Science, 257, No. 18: 8048 (2011); https://doi.org/10.1016/j.apsusc.2011.04.095
  5. V. S. Protsenko, L. S. Bobrova, S. A. Korniy, A. A. Kityk, and F. I. Danilov, Functional Materials, 25, No. 3: 539 (2018); https://doi.org/10.15407/fm25.03.539
  6. A. Merlo and G. Leonard, Materials, 14, No. 14: 3823 (2021); https://doi.org/10.3390/ma14143823
  7. V. Kukhar, E. Klimov, and S. Chernenko, Solid State Phenomena, 316: 873 (2021); https://doi.org/10.4028/www.scientific.net/SSP.316.873
  8. V. I. Lavrinenko, A. G. Lubnin, V. M. Tkach, I. P. Fesenko, and V. V. Smokvyna, Journal of Superhard Materials, 43, No. 2: 145 (2021); https://doi.org/10.3103/S1063457621020088
  9. G. G. Gorokh, M. I. Pashechko, J. T. Borc, A. A. Lozovenko, I. A. Kashko, and A. I. Latos, Applied Surface Science, 433: 829 (2018); https://doi.org/10.1016/j.apsusc.2017.10.117
  10. Î. ². Pylypenko, Nanosistemi, Nanomateriali, Nanotehnologii, 20, No. 1: 111 (2022); https://doi.org/10.15407/nnn.20.01.111
  11. L. Ropyak, T. Shihab, A. Velychkovych, V. Bilinskyi, V. Malinin, and M. Romaniv, Ceramics, 6, No. 1: 146 (2023); https://doi.org/10.3390/ceramics6010010
  12. V. B. Tarelnyk, A. V. Paustovskii, Y. G. Tkachenko, E. V. Konoplianchenko, V. S. Martsynkovskyi, and B. Antoszewski, Powder Metallurgy and Metal Ceramics, 55, Nos. 9–10: 585 (2017); https://doi.org/10.1007/s11106-017-9843-2
  13. S. A. Klimenko, I. A. Podchernjaeva, V. M. Beresnev, V. M. Panashenko, S. An. Klimenko, and M. Yu. Kopeikina, Journal of Superhard Materials, 36, No. 3: 208 (2014); https://doi.org/10.3103/S1063457614030095
  14. V. S. Antonyuk, Y. Y. Bondarenko, S. O. Bilokin’, V. O. Andrienko, and M. O. Bondarenko, Journal of Nano- and Electronic Physics, 11, No. 6: 06024 (2019); https://doi.org/10.21272/jnep.11(6).06024
  15. V. A. Tatarenko, T. M. Radchenko, and V. M. Nadutov, Metallofiz. Noveishie Tekhnol., 25, No. 10: 1303 (2003).
  16. S. M. Bokoch, M. P. Kulish, V. A. Tatarenko, and T. M. Radchenko, Metallofiz Noveishie Tekhnol., 26, No. 4: 541 (2004).
  17. P. Prysyazhnyuk, D. Lutsak, A. Vasylyk, S. Taer, and M. Burda, Metallurgical and Mining Industry, 7, No. 12: 346 (2015).
  18. Ya. Kusyi, V. Stupnytskyy, O. Onysko, E. Dragasius, S. Baskutis, and R. Chatys, Eksploatacja i Niezawodnosc — Maintenance and Reliability, 24, No. 4: 655 (2022); https://doi.org/10.17531/ein.2022.4.6
  19. Y. M. Kusyi and A. M. Kuk, J. Phys. Conf. Ser., 1426, No. 1: 012034 (2020); https://doi.org/10.1088/1742-6596/1426/1/012034
  20. W. Dai, C. Li, D. He, D. Jia, Y. Zhang, and Z. Tan, Surface and Coatings Technology, 380: 125014 (2019); https://doi.org/10.1016/j.surfcoat.2019.125014
  21. V. B. Kopei, O. R. Onysko, and V. G. Panchuk, J. Phys. Conf. Ser., 1426, No. 1: 012033 (2020); https://doi.org/10.1088/1742-6596/1426/1/012033
  22. ². Yo. Popadyuk, ². P. Shats’kyi, V. Ì. Shopa, and A. S. Velychkovych, Journal of Mathematical Sciences, 215: 243 (2016); https://doi.org/10.1007/s10958-016-2834-x
  23. O. Bazaluk, O. Dubei, L. Ropyak, M. Shovkoplias, T. Pryhorovska, and V. Lozynskyi, Energies, 15, No. 1: 83 (2022); https://doi.org/10.3390/en15010083
  24. M. Dutkiewicz, A. Velychkovych, I. Shatskyi, and V. Shopa, Materials, 15, No. 13: 4671 (2022); https://doi.org/10.3390/ma15134671
  25. T. P. Hovorun, O. V. Pylypenko, K. V. Berladir, K. O. Dyadyura, M. N. Dunaeva, S. I. Vorobiov, and A. Panda, Functional Materials, 26, No. 3: 548 (2019); https://doi.org/10.15407/fm26.03.548
  26. Î. À. Goncharov, D. A. Belous, A. N. Yunda, A. V. Khomenko, E. V. Mironenko, L. V. Vasilyeva, and C. A. Goncharova, Nanosistemi, Nanomateriali, Nanotehnologii, 20, No. 2: 385 (2022); https://doi.org/10.15407/nnn.20.02.385
  27. Y. Liu, S. Yu, Q. Shi, X. Ge, and W. Wang, Nanomaterials, 12, No. 9: 1388 (2022); https://doi.org/10.3390/nano12091388
  28. M. Bembenek, O. Popadyuk, T. Shihab, L. Ropyak, A. Uhrynski, V. Vytvytskyi, and O. Bulbuk, Nanomaterials, 12, No. 14: 2413 (2022); https://doi.org/10.3390/nano12142413
  29. V. A. Shevchuk, Strength of Materials, 32: 92 (2000); https://doi.org/10.1007/BF02511512
  30. D. Gay, Composite Materials: Design and Application (New York: CRC Press: 2014), p. 635; https://doi.org/10.1201/b17106
  31. R. M. Tatsiy, O. Y. Pazen, S. Y. Vovk, L. Y. Ropyak, and T. O. Pryhorovska, J. Serb. Soc. Comput. Mech., 13, No. 2: 36 (2019); https://doi.org/10.24874/jsscm.2019.13.02.04
  32. I. P. Shatskii, J. Appl. Mech. Tech. Phys., 30: 828 (1989); https://doi.org/10.1007/BF00851435
  33. I. P. Shatskii, Journal of Mathematical Sciences, 103, No. 3: 357 (2001); https://doi.org/10.1023/A:1011366312923
  34. S. Mohammadi, M. Yousefi, and M. Khazaei, Journal of Reinforced Plastics and Composites, 40: 3 (2020); https://doi.org/10.1177/0731684420941602
  35. I. P. Shatskii, J. Sov. Math., 67: 3355 (1993); https://doi.org/10.1007/BF01097747
  36. I. P. Shatskii, J. Math. Sci., 76: 2370 (1995); https://doi.org/10.1007/BF02362900
  37. W. K. Ahmed and A.-H. I. Mourad, J. Mech. Eng. Technol., 1, No. 2: 66 (2013); https://doi.org/10.18005/JMET0102005
  38. I. P. Shatskyi, M. V. Makoviichuk, and A. B. Shcherbii, Proc. of Conf. ‘Shell Structures: Theory and Applications’ (October 11–13, 2017) (Leiden: CRC Press: 2018), vol. 4, p. 165; https://doi.org/10.1201/9781315166605-34
  39. I. Shats’kyi, M. Makoviichuk, and A. Shcherbii, J. Math. Sci., 238: 165 (2019); https://doi.org/10.1007/s10958-019-04226-9
  40. I. P. Shatskyi, M. V. Makoviichuk, and A. B. Shcherbii, Mater. Sci., 55: 484 (2020); https://doi.org/10.1007/s11003-020-00329-w
  41. M. Dutkiewicz, T. Dalyak, I. Shatskyi, T. Venhrynyuk, and A. Velychkovych, Applied Sciences, 11, No. 22: 10676 (2021); https://doi.org/10.3390/app112210676
  42. I. P. Shatskyi, V. V. Perepichka, and L. Y. Ropyak, Metallofiz Noveishie Tekhnol., 42, No. 1: 69 (2020); https://doi.org/10.15407/mfint.42.01.0069
  43. Yu. V. Milman, B. A. Galanov, and S. I. Chugunova, Acta Metal. Mater., 41: 2523 (1993).
  44. S. N. Dub and N. V. Novikov, Journal of Superhard Materials, No. 6: 16 (2004).
  45. L. Y. Ropyak, I. P. Shatskyi, and M. V. Makoviichuk, Metallofiz. Noveishie Tekhnol., 41, No. 5: 647 (2019); https://doi.org/10.15407/mfint.41.05.0647
  46. L. Ya. Ropyak, I. P. Shatskyi, and M. V. Makoviichuk, Metallofiz. Noveishie Tekhnol., 39, No. 4: 517 (2017); https://doi.org/10.15407/mfint.39.04.0517
  47. L. Y. Ropyak, M. V. Makoviichuk, I. P. Shatskyi, I. M. Pritula, L. O. Gryn, and V. O. Belyakovskyi, Functional Materials, 27, No. 3: 638 (2020); https://doi.org/10.15407/fm27.03.638
  48. M. Bembenek, M. Makoviichuk, I. Shatskyi, L. Ropyak, I. Pritula, L. Gryn, and V. Belyakovskyi, Sensors, 22, No. 21: 8105 (2022); https://doi.org/10.3390/s22218105
  49. J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis (CRC Press: 2004), p. 854.
  50. O. Y. Dubei, T. F. Tutko, L. Y. Ropyak, and M. V. Shovkoplias, Metallofiz. Noveishie Tekhnol., 44, No. 2: 251 (2022); https://doi.org/10.15407/mfint.44.02.0251
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement