Issues

 / 

2023

 / 

vol. 21 / 

Issue 2

 



Download the full version of the article (in PDF format)

V. G. Rezanova and N. M. Rezanova
CNT-Filled Polypropylene/Plasticized Polyvinyl Alcohol Mixtures: Rheology, Morphology, and Properties of Composite Threads
0349–0361 (2023)

PACS numbers: 61.41.+e, 61.48.De, 62.23.Pq, 66.20.Ej, 81.05.Lg, 82.35.Np, 83.80.Sg

The influence of the concentration of plasticizer (glycerine) and carbon nanotubes (CNTs) on the micro- and macrorheological properties of melts of polypropylene/plasticized polyvinyl alcohol (PP/PVA) mixtures is studied. During flow of melts of all the studied compositions, a microfibrillar structure is formed within them. As found, changing the ratio of viscoelastic properties of PP and PVA, when adding different amounts of modifying additives, allows us to adjust the mass fraction of types of structures (microfibrils, films, particles), as well as their dimensional characteristics. Reducing the average diameter of microfibrils from 2.7 to 1.2 μm and increasing their share from 84.3 to 96.8 wt.% in the initial and nanofilled mixtures, respectively, are achieved in a composition with similar values of viscosity and elasticity of the components. As shown, the melts of bi- and three-component systems are typical non-Newtonian fluids, and the viscosity of their melts is several times lower than η of the initial components. The values of elasticity, judging by the equilibrium swelling of extrudates, are higher than for the starting polymers, and depend on the content of nanotubes. The ability to longitudinal deformation of the melt jet, which determines its fibre-forming properties, in composite systems is reduced, but remains sufficient for stable processing into threads on available process equipment. As established, the formed microfibrillary structure helps to improve the performance characteristics of composite monothreads due to the effect of self-reinforcement. Tensile strength and dimensional stability of threads obtained from a mixture containing 0.5 wt.% CNTs increase by 1.5 and 1.6 times, respectively.

Key words: polypropylene, polyvinyl alcohol, glycerine, carbon nanotubes, mixtures, morphology, monothreads, viscosity.

https://doi.org/10.15407/nnn.21.02.349

References
  1. Norizan Mohd Nurazzi, M. R. M. Asyraf, Abdan Khalina, Norli Abdullah, Fatimah Athiyah Sabaruddin, Siti Hasnah Kamarudin, So’bah Ahmad, Annie Maria Mahat, Chuan Li Lee, H. A. Aisyah, Mohd Nor Faiz Norrrahim, R. A. Ilyas, M. M. Harussani, M. R. Ishak, and S. M. Sapuan, Polymers, 7, No. 13: 1047 (2021); doi:10.3390/polym13071047
  2. A. A. Morsi, A. Rajeh, and A. A. Al-Muntaser, Composites. Part B: Engineering, 173: 106957 (2019); https://doi.org/10.1016/j.compositesb.2019.106957
  3. B. Huang, Biomanufacturing Reviews, 5: 3 (2020); doi:10.1007/s40898-020-00009-x
  4. J. Chen, B. Liu, X. Gao, and D. Xu, RSC Adv., 8: 28048 (2018); doi:10.1039/C8RA04205E
  5. T. P. Dyachkova, D. V. Tarov, E. A. Burakova, E. N. Tugolukov, A. N. Blokhin, E. V. Galunin, L. V. Rosenblum, and D. E. Kobzev, IOP Conf. Series: Materials Science and Engineering, 693: 012011 (2019); doi:10.1088/1757-899X/693/1/012011
  6. X. Qi, J. Yang, N. Zhang, T. Huang, Z. Zuo, Z. Kuhnert, P. Potschke, and Y. Wang, Progress in Polymer Science, 123: 101471 (2021); https://doi.org/10.1016/j.progpolymsci.2021.101471
  7. Xiaodong Zhao, Jun Zhao, Jian-Ping Cao, and Dongrui Wang, Materials and Design, 56: 807 (2013); doi:10.1016/j.matdes.2013.11.073
  8. B.Zhu, T. Bai, P. Wang, Y. Wang, Ch. Liu, and Ch. Shen, J. Biol. Macromol., 153: 1272 (2020); doi:10.1016/j.ijbiomac.2019.10.262
  9. L. Azubuike, U. Sundararaj, Materials, 14, No. 17: 4813 (2021); https://doi.org/10.3390/ma14174813
  10. N. M. Rezanova, B. M. Savchenko, V. P. Plavan, V. Yu. Bulakh, and N. V. Sova, Nanosistemi, Nanomateriali, Nanotehnologii, 15, Iss. 3: 559 (2017); https://doi.org/10.15407/nnn.15.03.0559
  11. N. M. Rezanova, I. A. Melnik, M. V. Tsebrenko, and A. V. Korshun, Fibre Chem., 46: 21 (2014); https://doi.org/10.1007/s10692-014-9554-0
  12. V. G. Rezanova and N. M. Rezanova, Programne Zabezpechennya dlya Doslidzhennya Polimernykh System [Software for the Study of Polymer Systems] (Kyiv: Publishing House ArtEkĄ: 2020), p. 358 (in Ukrainian).
  13. C. D. Han and K. Funatsu, J. Rheol., 22, No. 2: 113 (1978); https://doi.org/10.1122/1.549475
  14. Polymer Blends (Eds. D. R. Paul and C. B. Bucknall) (New York: John Wiley & Sons, Inc.: 2000), vol. 1, p. 618.
  15. J. Yang, X. Qi, N. Zhang, T. Huang, and Y. Wang, Composites Communications, 7: 51 (2018); https://doi.org/10.1016/j.coco.2017.12.010
  16. J. Guo, N. Briggs, S. Crossley, and B. P. Grady, AIChE J., 10, No. 61: 3500 (2015); https://doi.org/10.1002/aic.14943
  17. L. Zonder, A. Ophir, S. Kenig, and S. McCarthy, Polymer, 52: 5085 (2011).
  18. Y. Chen, Q. Yang, Y. Huang, X. Liao, and Y. Niu, Polymer (Guildf), 79: 159 (2015); doi:10.1016/j.polymer.2015.10.027
  19. Ivonne Otero Navas, Mohammad Arjmand, and Uttandaraman Sundararaj, RSC Advances, 85: (2017); https://doi.org/10.1039/C7RA11390K
  20. S. Thomas, R. Mishra, and N. Kalarikka, Micro and Nano Fibrillar Composites (MFCS and NFCS) from Polymer Blends (Woodhead Publishing: 2017), p. 372.
  21. A. Göldel, G. R. Kasaliwal, P. Pötschke, and G. Heinrich, Polymer, 2, No. 53: 411 (2012); doi:10.1016/j.polymer.2011.11.039
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement