Issues

 / 

2023

 / 

vol. 21 / 

Issue 2

 



Download the full version of the article (in PDF format)

F. M. Bukhanko
Two Types of Topological Kosterlitz–Thouless Phase Transitions in SmMnO3+δ Manganites, Driven by External Magnetic Field
0233–0246 (2023)

PACS numbers: 71.10.Pm, 74.10.+v, 74.81.Bd, 75.30.Et, 75.30.Kz, 75.47.Gk, 75.47.Lx

It is shown that, in a SmMnO3+δ sample cooled in a magnetic field H = 0 to 4.2 K, the topological order–disorder phase transition of the spin system occurs within the framework of the Kosterlitz–Thouless XY-model decoupling of pairs of the flat 2D vortices. At the same time, when the sample is cooled in the field H ≠ 0, the transition of the system of spins to a disordered state with increasing temperature occurs in the form of dissociation of pairs of bounded Z2 vortices at the same critical temperature TKT = 12 K, which is accompanied by a giant jump in the supermagnetization of the sample. The excitation and decay of low-energy bosons in a 1D metallic Luttinger liquid at temperatures of 0.5 K and 4.2 K during sample remagnetization in the ZFC and FC measurement modes is also studied.

Key words: Kosterlitz–Thouless phase transition, Luttinger liquid, bosons, topological superconductors.

https://doi.org/10.15407/nnn.21.02.233

References
  1. F. D. M. Haldane, Phys. Rev. Lett. 47, 1840 (1981); https://doi.org/10.1103/PhysRevLett.47.1840
  2. T. L. Schmidt, A. Imambekov, and L. I. Glazman, Phys. Rev. B, 82: 245104 (2010); https://doi.org/10.48550/arXiv.1009.4708
  3. S. Brazovskii, F. Matveenko, and P. Nozieres, JETP Letters, 58: 796 (1993); doi: 10.1051/jp1:1994161
  4. T. Vekua, S. I. Matveenko, and G. V. Shlyapnikov, JETP Letters, 90: 289 (2009); https://doi.org/10.1134/S0021364009160139
  5. M. Rizzi, M. Polini, M. A. Cazalilla, M. R. Bakhtiari, M. P. Tosi, and R. Fazio, Phys. Rev. B, 77: 245105 (2008); https://doi.org/10.1103/PhysRevB.77.245105
  6. Fabian H. L. Essler and Alexei M. Tsvelik, Ann. Henri Poincare, 4, Suppl. 2: S589 (2003); doi:10.1007/s00023-003-0945-7
  7. D. Controzzi and F. H. L. Essler, Phys. Rev. B, 66: 165112 (2002); https://doi.org/10.1103/PhysRevB.66.165112
  8. W. J. Gannon, I. A. Zaliznyak, L. S. Wu, A. E. Feiguin, A. M. Tsvelik, F. Demmel, Y. Qiu, J. R. D. Copley, M. S. Kim, and M. C. Aronson, Nature Communications, 10: 1123 (2019); https://doi.org/10.1038/s41467-019-08715-y
  9. Bella Lake, Alexei M. Tsvelik, Susanne Notbohm, D. Alan Tennant, Toby G. Perring, Manfred Reehuis, Chinnathambi Sekar, Gernot Krabbes, and Bernd Buchner, Nature Physics, 6: 50 (2010); doi:10.1038/nphys1462
  10. Zhe Wang, M. Schmidt, A. K. Bera, A. T. M. N. Islam, B. Lake, A. Loidl, and J. Deisenhofer, Phys. Rev. B, 91: 140404 (R) (2015); https://doi.org/10.1103/PhysRevB.91.140404
  11. B. Grenier, S. Petit, V. Simonet, E. Canevet, L.-P. Regnault, S. Raymond, B. Canals, C. Berthier, and P. Lejay, Phys. Rev. Lett., 114: 017201 (2015); https://doi.org/10.1103/PhysRevLett.114.017201
  12. M. Matsuda, H. Onishi, A. Okutani, J. Ma, H. Agrawal, T. Hong, D. M. Pajerowski, J.R. D. Copley, K. Okunishi, M. Mori, S. Kimura, and M. Hagiwara, Phys. Rev. B, 96: 024439 (2017); https://doi.org/10.1103/PhysRevB.96.024439
  13. Q. Faure, S. Takayoshi, S. Petit, V. Simonet, S. Raymond, L.-P. Regnault, M. Boehm, J. S. White , M. Mansson, C. Ruegg, P. Lejay, B. Canals, T. Lorenz, S. C. Furuya, T. Giamarchi, and B. Grenier, Nature Physics, 14: 716 (2018); https://doi.org/10.1038/s41567-018-0126-8
  14. A. K. Bera, B. Lake, F. H. L. Essler, L. Vanderstraeten, C. Hubig, U. Schollwöck, A. T. M. N. Islam, A. Schneidewind, and D. L. Quintero-Castro, Phys. Rev. B, 96: 054423 (2017); https://doi.org/10.1103/PhysRevB.96.054423
  15. V. J. Kauppila, F. Aikebaier, and T. T. Heikkilä, Phys. Rev. B, 93: 214505 (2016); https://doi.org/10.1103/PhysRevB.93.214505
  16. M. Sato and Y. Ando, Rep. Prog. Phys., 80: 076501 (2017); https://doi.org/10.1088/1361-6633/aa6ac7
  17. L. Balents, C. R. Dean , D. K. Efetov, and A. F. Young , Nature Physics, 16: 725 (2020); https://doi.org/10.1038/s41567-020-0906-9
  18. F. N. Bukhanko and A. F. Bukhanko, Nanosistemi, Nanomateriali, Nanotehnologii, 16, Iss. 2: 271 (2018); https://doi.org/10.15407/nnn.16.02.271
  19. F. N. Bukhanko and A. F. Bukhanko, Fizika Nizkikh Temperatur, 47: 1021 (2021); doi:10.1063/10.0006569
  20. F. N. Bukhanko and A. F. Bukhanko, Fizika Tverdogo Tela, 64: 181 (2022); doi:10.21883/FTT.2022.02.51928.142
  21. F. N. Bukhanko and A. F. Bukhanko, Journal of Technical Physics, 61: 1531 (2016); https://doi.org/10.1134/S1063784216100091
  22. J. M. Kosterlitz and D. J. Thouless, J. Phys. C, 5: L124 (1972); https://doi.org/10.1088/0022-3719/5/11/002
  23. J. M. Kosterlitz and D. J. Thouless, J. Phys. C, 6: 1181 (1973); https://doi.org/10.1088/0022-3719/6/7/010
  24. J. M. Kosterlitz, J. Phys. C, 7: 1046 (1974); https://doi.org/10.1088/0022-3719/7/6/005
  25. H. Kawamura and S. Miyashita, J. Phys. Soc. Jap., 53: 4138 (1984); https://doi.org/10.1143/JPSJ.53.4138
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement