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It is shown that, in a SmMnO3 sample cooled in a magnetic field H0 to 
4.2 K, the topological order–disorder phase transition of the spin system 
occurs within the framework of the Kosterlitz–Thouless XY-model decou-
pling of pairs of the flat 2D vortices. At the same time, when the sample 
is cooled in the field H0, the transition of the system of spins to a dis-
ordered state with increasing temperature occurs in the form of dissocia-
tion of pairs of bounded Z2 vortices at the same critical temperature 
TKT12 K, which is accompanied by a giant jump in the supermagnetiza-
tion of the sample. The excitation and decay of low-energy bosons in a 1D 
metallic Luttinger liquid at temperatures of 0.5 K and 4.2 K during sam-
ple remagnetization in the ZFC and FC measurement modes is also studied. 

В даній роботі показано, що в зразку SmMnO3, охолодженому в маг-
нетному полі H0 до 4,2 К топологічний фазовий перехід лад–безлад 
спінової системи відбувається в рамках XY-моделю Костерліца–
Таулесса дисоціяції пар пласких 2D-вихорів. Водночас за охолодження 
зразка у полі H0 перехід системи спінів у невпорядкований стан із 
підвищенням температури відбувається у вигляді дисоціяції пар 
зв’язаних Z2-вихорів за однакової критичної температури TКT12 К, 
що супроводжується гігантським стрибком надмагнетованости зразка. 
Досліджено також збудження та розпад низькоенергетичних бозонів у 
Латтінґеровій 1D-металевій рідині за температур у 0,5 К та 4,2 К під 
час перемагнетування зразка в ZFC- та FC-режимах міряння. 
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1. INTRODUCTION 

Recently, the Tomonaga–Luttinger liquid model, or simply the Lut-
tinger liquid (LL), has been of great interest. This model describes 
well the interaction of electrons or other fermions in a one-
dimensional conductor. Such a model is necessary because the com-
monly used Fermi liquid model loses its applicability in the one-
dimensional case. The LL theory describes low-energy collective ex-
citations in a one-dimensional electron gas as bosons. The Hamilto-
nian for free electrons is split over electrons with opposite (left–
right) directions of motion. Among the physical systems described 
by this model, there are: conduction electrons in the mode of frac-
tional or integer quantum Hall effect, 1D chains of half-integer 
spins described by the Heisenberg model. The LL theory describes 
well the low-energy properties of a wide class of gapless one-
dimensional interacting fermionic systems [1, 2]. 
 The limitation of consideration to low excitation energies is usu-
ally justified by the linearization of the spectrum of physical fermi-
ons around the right and left Fermi points ϵ(k)vF (k kF). Within 
this approximation, the system can be rigorously described even in 
the presence of nonzero interactions between particles. The theory 
of interacting fermions is transformed into the theory of non-
interacting bosons, and all correlation functions can be calculated 
exactly. It is assumed that in the one-dimensional case, excitations 
of many particles in the form of charge and spin density waves, 
which obey Bose statistics, mainly replace the elementary excita-
tions of fermions. One of the remarkable features of one-
dimensional conducting systems of fermions in the Luttinger liquid 
state is the separation of spins and charges. The Hamiltonian of the 
interacting system is divided into two commuting terms, which act 
in different Hilbert spaces, describe the charge, and spin degrees of 
freedom separately. This unusual state of one-dimensional conduct-
ing systems is completely characterized by the spin and charge den-
sity wave velocities (vs and vc, respectively) and the Luttinger pa-
rameter K, which depends on the magnitude of the interaction be-
tween the particles. For nonzero interactions, these rates differ. 
The collective nature of the LL Eigen oscillations and the existence 
of separation of spins and charges are clearly manifested in various 
dynamic response functions. The structure factors of charge density 
S(k, ) and spin S+(k, )SxiSy, Szz(k, ) measure the linear re-
sponse of a system of particles with momentum k and energy  to a 
perturbation that changes the density of charges and spins in the 
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system. For a spin LL, the dynamic structure factor of the charge 
density is S(k, )  (vc|k|), while the dynamic structure factor 
of the spin density is Szz(k, )1/2S

 (k, )(vs|k|). The pres-
ence of the -shaped Dirac peak of these functions reflects the fact 
that the charge and spin waves are natural oscillations of the LL; 
therefore, each value of the wave number corresponds to certain ex-
citation energy. This result is directly related to the linearization of 
the fermion spectrum in the linear LL theory. It should be noted 
that, according to this model, charge and spin density waves are 
completely decoupled. Far from the Fermi points, the curvature of 
the physical spectrum of fermions ϵ(k) cannot be neglected, for ex-
ample, curvature of the fermion spectrum leads to coupling of 
charge and spin density waves [3–5]. 
 In Refs. [6, 7], the dynamic response of strongly correlated one-
dimensional Mott insulators with a spectral gap M with a half and a 
quarter filling level of the conduction band was considered. It was 
found that the dynamic response functions of charges and spins are 
very different in these two cases. According to [6], in the limit of 
low excitation energies, both systems exhibit spin-charge separa-
tion, which made it possible to accurately calculate their dynamic 
spectral function of the charge density and spin A(, kF q). It was 
found that, in a one-dimensional half-filled Mott dielectric at a 
temperature T0 K, the excitation and annihilation operators of an 
ensemble of left-handed and right-handed fermions separate them 
into separate charge and spin fragments as a result of bosonization 
in the form of charge and spin density waves. The paper presents a 
series of spectral functions AR(, kF q) calculated for the cases 
vs0.8vc, 4Мq4М, which clearly shows the existence of two 
peaks corresponding to CDW and SDW excitation. Much of the 
spectral weight is concentrated in these features, which are a direct 
manifestation of the charge-spin separation. The peak feature of the 
spectral function with a lower (higher) energy corresponds to a sit-
uation in which all fermions with momentum q participating in the 
formation of the collective continuum of excitations are spin 
(charge) carriers. It is important to note that both peaks have a 
significant width. At low temperatures TM, the effect of temper-
ature increase on the charge correlation function is small, but the 
spin part of the spectral function can change greatly, since there is 
no gap in the spinon spectrum. It was found that the spectral func-
tion of a one-dimensional Mott dielectric with a quarter-filling level 
does not contain two distinct peak features associated with separate 
excitation of charge and spin density waves. In contrast to half-
filling, one can expect the presence of only one asymmetric very 
wide dispersed peak in the density of states A(, kF q) located 
around kF. The formation of low-energy bosons in the form of 1D 
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charge/spin density waves in systems of AFM spin chains, caused 
by confinement of spinon pairs, has been well studied in [8–14]. 
 As shown in [15–17], the formation of ultranarrow 2D bands of 
Majorana fermions in graphene as a result of Landau quantization 
of the spectrum of quasi-particles with the Dirac spectrum of collec-
tive excitations is a possible reason for the appearance of topologi-
cal superconductivity in graphene. In [15], the superconducting 
properties of a two-dimensional Dirac material, such as deformed 
graphene, which in normal state has a spectrum of free charge car-
riers with a flat energy band. It is shown that in the superconduct-
ing state, the appearance of a flat energy band of carriers caused by 
deformation leads to a strong increase in the critical temperature of 
superconductivity compared to the case without deformation, an 
inhomogeneous order parameter with a two-peak shape of the local 
density of states, and a large, almost uniform and isotropic super-
current. According to [16], in systems with a condensed state, when 
a quasiparticle is a superposition of electron and hole excitations 
and its production operator † becomes identical to the annihilation 
operator , such a particle can be identified as a Majorana fermion. 
In the Reed–Green model, the Bogolyubov quasi-particles in the 
volume become dispersive Majorana fermions, and the bound state 
formed in the core of the vortex becomes the Majorana zero mode. 
The former is interesting as a new type of wandering quasiparticles, 
while the latter is useful as a qubit for topological quantum compu-
ting. Thus, the formation of flat bands of Majorana fermions is a 
characteristic mechanism of topological superconductivity, BCS and 
Bose–Einstein condensation of bosons in the form of a bound state 
of 2D Majorana fermions and Dirac superconducting flat zone. The 
crossover of electron pairs characteristic of BCS and Bose–Einstein 
condensation of bosons in the form of a bound state of Majorana 
fermions (Majorana zero mode) was also studied in topological su-
perconductors. 

2. EXPERIMENTAL TECHNIQUE 

Samples of self-doped manganites SmMnO3 ( 0.1) were obtained 
from high-purity oxides of lanthanum, samarium and electrolytic 
manganese, taken in a stoichiometric ratio. The synthesized powder 
was pressed under pressure of 10 kbar into discs of 6 mm in diame-
ter, 1.2 mm thick and sintered in air at a temperature of 1170C 
for 20 h followed by a decrease in temperature from at a rate of 
70C/h. The resulting tablets were is a single-phase ceramic accord-
ing to x-ray data. X-ray studies were carried out with 300 K on 
DRON-1.5 diffractometer in radiation NiK12

. Symmetry and pa-
rameters of the crystal gratings were determined by the position 



TWO TYPES OF TOPOLOGICAL KOSTERLITZ–THOULESS PHASE TRANSITIONS 237 

and character splitting reflections of the pseudocubic lattice perov-
skite type. Temperature and field dependences of magnetization 
were obtained in ZFC- and FC-measurement modes dc magnetization 
in the range of fields 5 kOeH5 kOe at 4.2 K using a non-
industrial magnetometer. 

2. EXPERIMENTAL RESULTS AND DISCUSSION 

According to the results of studying the temperature dependences 
of the magnetization dc in SmMnO3 measured in the FC mode [18–
20], in the temperature range 0T20 K, the magnetization con-
tains three contributions: the well-known dominant contribution of 
the magnetization of the Z2 RVB phase of the gap quantum spin 
liquid in the form of a broad magnetization peak with a top near 20 
K and weaker additional contributions to the magnetization of the 
degenerate state of thermal excitations of the spinon and vortex 
pairs in the form of characteristic features of the supermagnetiza-
tion of samples near temperatures Tspinon  8 К and ТKТ  12 K, 
where Tspinon is the average temperature of thermal excitation of the 
spinon spectrum in QSL, and ТKТ is the temperature of the topolog-
ical Kosterlitz–Thouless phase transition of the dissociation of 2D 
vortex pairs in a superconducting quantum liquid. In the FC meas-
urement mode, the QSL is in a polarized state, which makes it pos-
sible to record weak changes in the magnetization of the samples 
induced by thermal excitations of the nonmagnetic (singlet) ground 
state of the quantum spin liquid in SmMnO3 in the region of very 
low temperatures. 
 According to Fig. 1, the excitation of spinons with S½ in a 
magnetic field H100 Oe occurs mainly in the temperature range 
6–10 K in the form of a doublet of two broad almost overlapping 
supermagnetization peaks of the samples near the average excita-
tion temperature Tspinon  8 K, which corresponds to the thermal ex-
citation energy of Еspinon  0.6 meV. At temperatures below 6 K, two 
weak magnetization doublets of spinon pairs are observed, with an 
excitation energy Еspinon lower than the low-energy gap s0.4 meV 
in the spinon excitation spectrum existing in the 2D system of 
spins between the nonmagnetic singlet spin state in the ground RVB 
state of the QSL and the excited magnetic state in the form of spi-
nons. As can be clearly seen from Fig. 1, the doublet excitation of 
spinon pairs with S1/2 occurs in the temperature range that 
overlaps with the temperatures of decoupling of pairs of 2D vorti-
ces of the superconducting liquid, which indicates the practical co-
incidence (crossover) of their excitation energies. The decoupling of 
vortex–antivortex pairs in a superconducting liquid at temperatures 
above TKT is accompanied by a giant jump in the supermagnetiza-
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tion of the sample. 
 The jump in magnetization is explained by the appearance of 
plasma of free 2D vortices in the SC of a quantum liquid with the 
opposite direction of magnetic moments, which are easily oriented 
along the direction of the external magnetic field. Thus, in weak 
magnetic fields of 100 Oe, the thermal excitation energies of pairs 
of spinons with S1/2 and the plasma of 2D electron vortices prac-
tically coincide, which indicates the degeneracy of the ground states 
of spin and superconducting quantum liquids. As can be seen from 
Fig. 1, the jump in the additional magnetization near the TKT is al-
most three times greater than its increase near Tspinon, which indi-
cates a more significant contribution of the free vortex magnetiza-
tion to the total magnetization of the sample. 
 Figure 2 clearly show that an increase in the strength of an ex-
ternal magnetic field to the value H1 kOe leads to significant 
changes in the temperature dependences of the M(T) curves near 
the critical temperature TKT of transition into a coherent supercon-
ducting state. First, there is a complete consolidation of two weakly 
resolved peaks of doublet excitation of spinon pairs with S1/2 
into a single symmetric sinus-like peak near the average tempera-
ture Tspinon  8 K and a strong broadening of the spinon excitation 
spectrum in the temperature range 6–10 K. This result evidences of 

 

Fig. 1. The temperature dependence M(T) of mixed state spin and super-
conducting quantum liquids in SmMnO3 in FC mode, measured in the 
field H100 Oe in the temperature range 4.2–20 K. At temperatures 
TTcTKT12 K, a strong jump of the magnetization curve M(T) is ob-
served, caused by a topological phase transition of the dissociation of Z2 
vortex–antivortex pairs in a superconducting quantum liquid [spinon pairs 
(SP), vortex pairs (VP), free vortices (FV)]. 
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the existence of ‘gigantic’ fluctuations arising in the ground state 
of QSL, which leads to smearing of the spectrum of low-energy spi-
non excitations. Secondly, the growth of the external magnetic field 
leads to a strong decrease of the jump of supermagnetization near 
the critical temperature T2DTKT  12 K of the 2D vortex pairs’ dis-
sociation, while the intensity of spinon pair excitation near Tspinon 

 8 K is practically unchanged. This indicates that the QSL is much 
more stable to the action of an external magnetic field compared to 
the coherent SC state. Further destruction of the coherent SC state 
in the superconducting composite occurs in the magnetic field 
H3.5 kOe (Fig. 3). 
 This manifests itself in the almost complete suppression of the 
‘gigantic’ jump in supermagnetization near TKT  12 K. Only a weak 
jump in the temperature dependence of magnetization is observed 
near TKT, separating the phase with new quantum spinon oscilla-
tions and the phase with a low density of bonded vortex-antivortex 
pairs. A distinctive feature of the temperature dependences of the 
supermagnetization M(T), obtained with increasing external mag-
netic field up to 3.5 kOe, is the appearance of clearly pronounced 
stepped oscillations of the spinon gas magnetization. As is clearly 
shown in Fig. 3, a characteristic feature of the supermagnetization 
oscillating in the temperature range of 4.2–9 K is the appearance of 
periodic threshold features of width E0.08–0.15 meV with char-

 

Fig. 2. The temperature dependence M(T) of mixed state spin and super-
conducting quantum liquids in SmMnO3 in FC mode, measured in the 
field H1 kOe in the temperature range 4.2–20 K. At temperatures 
TKT12 K, a strong decrease of the jump of supermagnetization is ob-
served [spinon pairs (SP), vortex pairs (VP), free vortices (FV)]. 
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acteristic narrow plateaus in the temperature dependence of the 
sample magnetization in Landau bands with n1, n2, and n3. 
With increasing T, the height of thresholds and width of steps 
(plateaus) grow. New quantum oscillations of temperature depend-
ences of the ‘supermagnetization’ of 2D spinon gas in the form of 
three narrow steps (plateaus) correspond to an integer filling of 
three finite gap Landau levels with spinons in a strong external 
magnetic field. Thus, even a relatively small increase in the 
strength of the external magnetic field led to the almost complete 
destruction of the coherent SC state and the transition from a con-
tinuous spinon excitation spectrum of the QSL to a discrete one. 
Note the significant difference in the evolution of the Landau quan-
tization of the spectrum of spinon pairs in SmMnO3 and 
La0.15Sm0.85MnO3 with an increase in the strength of the external 
magnetic field. 
 In this work, the excitation and decay of low-energy bosons in 
SmMnO3 at temperatures of 0.5 K and 4.2 K during sample re-
magnetization in the ZFC and FC measurement mode was also stud-
ied. Figure 4 shows the field dependences M(H) of the magnetiza-
tion of SmMnO3 at T0.6 K in the ZFC measurement mode in the 
form of magnetization isotherms—1 and remagnetization—2. As 
can be seen from the figure, two peak features are formed during 
sample magnetization M(H) of equal intensity near H1300 Oe 
and H2  0 in the interval of magnetic fields 600 Oe, which are 
characteristic of the excitation of decoupled 1D charge and spin 

 

Fig. 3. The temperature dependence M(T) of mixed state spin and super-
conducting quantum liquids in SmMnO3 in FC mode, measured in the 
field H3.5 kOe in the temperature range 4.2–20 K. At temperatures 
TKT12 K, a further destruction of the coherent SC state in the supercon-
ducting composite is observed [spinon pairs (SP), vortex pairs (VP), free 
vortices (FV)]. 
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density waves in a Luttinger liquid [2]. 
 It should be noted that, according to the experimental results ob-
tained in this work, in magnetization isotherm 1 at a sample tem-
perature of 0.6 K, decoupled charge and spin density waves are 
formed, which are characteristic of the excitation of a 1D metallic 
Luttinger liquid. While in remagnetization isotherm 2 near zero 
magnetic field, a coupled 1D CDW/SDW appears in the form a wide 
magnetization trough M(H). This unusual state is similar to the 
excitation of two coupled 1D Majorana zero modes—characteristic 
of collective excitations of topological superconductors. The excita-
tion of such collective 1D states in an external magnetic field was 
observed earlier in systems weakly coupled by the exchange of Hei-
senberg and Ising AFM spin chains with different configurations 
and degrees of anisotropy [8–14]. 
 According to these works, even a weak increase in the transverse 
component of the external magnetic field can lead to further con-
finement of spinon pairs, which is accompanied by the appearance 
of gapless modes of natural longitudinal oscillations of the system 
of spin chains. As can be seen in Fig. 5, a slight increase in the 
temperature of SmMnO3 to 4.2 K led to a dramatic change in the 
magnetization reversal isotherms of the sample. There was a split-
ting of the peak features of the supermagnetization М(Н) on iso-
therm 1 near the critical values of the external magnetic field 
strength H1 and H2, which we associate with the excitation of 

 

Fig. 4. Isotherms of magnetization—1 and remagnetization—2 of the sam-
ple SmMnO3 in ZFC mode in the range of magnetic fields 600 Oe at 
temperature T0.6 K. Two-peak features are formed during sample mag-
netization M(H) of equal intensity near H1300 Oe and H20, which 
are characteristic of the excitation of decoupled 1D charge and spin densi-
ty waves in a Luttinger liquid. 
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fragments of decoupled charge and spin density waves with differ-
ent wave vectors q1 and q2 parallel to the a and b axes of the crystal 
lattice. At the same time, the splitting of a wide magnetization 
trough M(H) near zero field at T0.6 K completely disappeared 
with increasing temperature, which can be explained by the 
strengthening of the coupling of two 1D Majorana modes and a 
strong increase in charge/spin fluctuations. According to Fig. 6, 
during the remagnetization of the SmMnO3 sample at 4.2 K in the 
FC mode, the field dependences M(H) of the magnetization practi-
cally coincide with the measured dependences of the magnetization 
at T0.6 K in the ZFC mode. This indicates a higher stability of 
low-energy boson excitations in this measurement mode. 
 It is known that in two-dimensional (2D) systems at all tempera-
tures spontaneous ordering with the appearance of a conventional 
long-range order is impossible. Studies of critical behaviour within 
the framework of the classical two-dimensional XY model have 
shown that at sufficiently low temperatures, a phase with new 
properties arises in a 2D system, in which there is no conventional 
long-range order. A number of theories predict a low-temperature 
region, which is characterized as a phase of critical points with con-
tinuously changing critical indices. Within this phase, the correla-
tion functions of the order parameter decrease at large distances 
according to power laws, while at temperatures above the critical 

 

Fig. 5. Isotherms of magnetization—1 and remagnetization—2 of the sam-
ple SmMnO3 in ZFC mode in the range of magnetic fields 600 Oe at 
temperature T4.2 K. A splitting of the peak features of the supermag-
netization М(Н) on isotherm 1 near the critical values of the external 
magnetic field strength H1300 Oe and H20, associated with the exci-
tation of fragments of decoupled charge and spin density waves with dif-
ferent wave vectors q1 and q2. 
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value, the correlations decay exponentially. Kosterlitz and Thouless 
predicted a new phase transition order–disorder type in a two-
dimensional lattice of spins, which is characterized by the estab-
lishment of a topological long-range order in a flat system [22–24]. 
 According to the XY Kosterlitz–Thouless model, the decoupling 
of 2D vortex pairs is accompanied by a cusp-shaped drop in the two-
dimensional density of neutral superfluid liquids or the critical cur-
rent density in two-dimensional networks of Josephson weak links. 
Previously, we discovered in SmMnO3 a cusp-shaped feature of the 
magnetization curves M(T) in the ZFC measurement mode near the 
critical temperature of the Kosterlitz–Thouless transition of the 
sample to the coherent superconducting state TKTTc  12 K, which 
is characteristic of the dissociation of 2D vortex pairs (Fig. 7). In a 
narrow range of low temperatures 8 KT12 K, a plateau was 
found in the temperature dependence of the dc magnetization of the 
sample, while in the higher temperature range 12 KT16 K, the 
magnetization decreases exponentially. This result differs signifi-
cantly from the behaviour of the magnetization M(T) near TKT 
measured in SmMnO3 in FC mode (Fig. 1). 
 In Ref. [25], the nature of the Kosterlitz–Thouless phase transi-
tion has been studied within the framework of the Heisenberg mod-
el with the exchange integral J. The model is based on the concept 
of a topologically stable point defect—the Z2 vortex. Unlike an or-

 

Fig. 6. Isotherms of magnetization—1 and remagnetization—2 of the sam-
ple SmMnO3 in FC mode in the range of magnetic fields 600 Oe at tem-
perature T4.2 K. Two-peak features are formed during sample magneti-
zation M(H) near H1300 Oe and H20 with different intensity, which 
are characteristic of the excitation of decoupled 1D charge and spin densi-
ty waves in a Luttinger liquid. 
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dinary 2D vortex, which is considered in the two-dimensional XY 
model, Z2 vortices are characterized by a topological quantum num-
ber. Just like ordinary vortices, Z2 vortices at low temperatures ex-
ist in the form of a bound pair and begin to dissociate at a certain 
critical temperature, which corresponds to the Kosterlitz–Thouless 
phase transition. In contrast to the XY model, in this model the 
spin waves destroy the spin order in such a way that the spin corre-
lation decreases exponentially even in the low-temperature phase. 
Therefore, the Kosterlitz–Thouless-like phase transition occurs be-
tween two phases with exponential decay of spin correlations. 
 The authors found that the ‘order parameter’, which characteriz-
es the low-temperature and high-temperature phases, could be in-
troduced through the vorticity function of the system of spins, 
which has the structure of a Wilson loop in the gauge theory. At 
low temperatures, Z2 vortices exist only as strongly coupled pairs of 
vortices. At temperatures above TKT, one can expect spontaneous 
generation of free Z2 vortices. The same transition was proposed by 
Kosterlitz–Thouless for ordinary 2D vortices within the framework 
of the XY model. The question arises as to which physical parame-
ter makes it possible to qualitatively distinguish between the low-
temperature and high-temperature Z2 phases. Such a parameter is 
the vorticity function V[C] on the contour C, whose thermal averag-
ing over the contour C is the topological order parameter 
VRVR[C], where R is the perimeter of the contour. The tempera-

 

Fig. 7. A cusp-shaped feature of the magnetization curves M(T) in SmM-
nO3 in the ZFC measurement mode near the critical temperature of the 
Kosterlitz–Thouless transition of the sample to the coherent superconduct-
ing state TKTTc12 K, which is characteristic of the dissociation of 2D 
vortex pairs [vortex pairs (VP), free vortices (FV)]. 
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ture dependence of the heat capacity exhibits a sharp peak near the 
temperature T/J0.3, which corresponds to the critical tempera-
ture of the Kosterlitz–Thouless topological phase transition decou-
pling Z2 of vortex pairs. The temperature dependence of the density 
of elementary Z2 vortices nv(T) exhibits a sharp decrease in nv with 
decreasing temperature near the maximum heat capacity. A simula-
tion of the Z2 distribution of vortex pairs in the lattice plane at 
temperatures below and above the TKT is given. As expected, at low 
temperatures, Z2 vortices are tightly coupled vortex pairs. As the 
temperature rises, both the number Z2 of vortex pairs and the sepa-
ration between the vortices forming a pair increase. At T/J0.32, 
pairs of vortices appear with a separation much greater than the 
period of the crystal lattice, which confirms the mechanism of de-
coupling of vortex pairs during the Kosterlitz–Thouless transition. 
It should be noted that there is a tendency for the formation of 
clusters from N2 vortex pairs. At T/J0.34, the density of ele-
mentary Z2 vortices nv(T) increases strongly. Z2 vortex in this mod-
el can be considered as a vortex formed by chirality vectors. 

4. CONCLUSION 

In this paper, it is shown that in a SmMnO3 sample cooled in a 
magnetic field H0 to 4.2 K (ZFC mode), the topological order–
disorder phase transition of the spin system occurs within the 
framework of the XY Kosterlitz–Thouless model: decoupling of 
pairs of the flat 2D vortices, which is accompanied by cusp-like 
drop in the two-dimensional density of neutral superfluid liquid or 
the critical current density in two-dimensional networks of Joseph-
son weak links. At the same time, when the sample is cooled in the 
field H0 (FC mode), the transition of the system of spins to a 
disordered state with increasing temperature occurs in the form of 
dissociation of pairs of bounded Z2 vortices at the same critical 
temperature TKT12 K, which is accompanied by a giant jump in 
the supermagnetization of the sample. 
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