Issues

 / 

2023

 / 

vol. 21 / 

Issue 1

 



Download the full version of the article (in PDF format)

F. M. Bukhanko
2D Majorana Flat Bands as Reason of Topological Superconductivity in Two-Dimensional Z2-Quantum Spin Liquid in La0.15Sm0.85MnO3+δ Manganites
0033–0047 (2023)

PACS numbers: 14.80.Va, 74.10.+v, 74.20.Mn, 74.81.Bd, 75.30.Et, 75.30.Kz, 75.47.Lx

As shown, the formation and destruction of 2D Majorana flat zones in frustrated La0.15Sm0.85MnO3+δ manganites occur as a result of Landau quantization of the spectrum of magnetic excitations of the Z2-quantum spin liquid with magnetic flux in the form of composite quasi-particles ‘spinon–gauge field’. In this work, the dynamics of the formation and destruction of 2D Majorana flat zones in frustrated manganites is also studied by analysing of the dc field M(H) dependences measured in the zero-field-cooled (ZFC) and field-cooled (FC) measurement modes. As shown, in the processes of magnetization reversal of La0.15Sm0.85MnO3+δ at 4.2 K, a superposition of the hump-like asymmetric features of the M(H) plots is formed in the range of magnetic fields of ±500 Oe, and non-dispersive ultra-narrow 2D Majorana flat zones of excited states of Z2-chiral quantum spin liquid are formed in the range of weak magnetic fields of 100–200 Oe near the zero field, similarly to flat bands in the low-dimensional topological superconductors.

Key words: 2D Majorana flat zones, Landau quantization, Z2-chiral quantum spin liquid, gauge field of spinon-pairs’ spectrum, topological superconductors.

https://doi.org/10.15407/nnn.21.01.033

References
  1. H. Tian, S. Che, T. Xu, P. Cheung, K. Watanabe, T. Taniguchi, M. Randeria, F. Zhang, C. N. Lau, and M. W. Bockrath, arXiv:2112.13401 [cond-mat.supr-con]: 13401 (2001); https://doi.org/10.48550/arXiv.2112.13401
  2. S. Peotta and P. Torma, Nat. Commun., 6: 8944 (2015); https://doi.org/10.1038/ncomms9944
  3. X. Hu, T. Hyart, D. I. Pikulin, and E. Rossi, Phys. Rev. Lett., 123: 237002 (2019); https://doi.org/10.1103/PhysRevLett.123.237002
  4. F. Xie, Z. Song, B. Lian, and B. A. Bernevig, Phys. Rev. Lett., 124: 167002 (2020); doi:10.1103/PhysRevLett.124.167002
  5. A. Julku, T. J. Peltonen, L. Liang, T. T. Heikkila, and P. Torma, Phys. Rev. B, 101: 060505 (2020); https://doi.org/10.1103/PhysRevB.101.060505
  6. N. Verma, T. Hazra, and M. Randeria, Proc. Nat. Acad. Sci., 118: e2106744118 (2021); https://doi.org/10.1073/pnas.2106744118
  7. Q. Chen, J. Stajic, S. Tan, and K. Levin, Physics Reports, 412: 1 (2005); doi:10.1016/j.physrep.2005.02.005
  8. M. Randeria and E. Taylor, Annual Reviews of Condensed Matter Physics, 5: 209 (2014); https://doi.org/10.1146/annurev-conmatphys-031113-1338299
  9. Y. Nakagawa, Y. Kasahara, T. Nomoto, R. Arita, T. Nojima, and Y. Iwasa, Science, 372: 190 (2021); doi:10.1126/science.abb9860
  10. T. T. Heikkila and G. E. Volovik, Basic Physics of Functionalized Graphite, 123 (2016); https://doi.org/10.1007/978-3-319-39355-1_6
  11. V. J. Kauppila, F. Aikebaier, and T. T. Heikkila, Phys. Rev. B, 93: 214505 (2016); https://doi.org/10.1103/PhysRevB.93.214505
  12. M. Sato and Y. Ando, Rep. Prog. Phys., 80: 076501 (2017); https://doi.org/10.1088/1361-6633/aa6ac7
  13. K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett., 103: 237001 (2009); https://doi.org/10.1103/PhysRevLett.103.23700
  14. K. Flensberg, Phys. Rev. B, 82: 180516 (2010); https://doi.org/10.1103/PhysRevB.82.180516
  15. P. A. Ioselevich and M. V. Feigel’man, New J. Phys., 15: 055011 (2013); https://doi.org/10.1088/1367-2630/15/5/055011
  16. L. Balents, C. R. Dean , D. K. Efetov, and A. F. Young , Nature Physics, 16: 725 (2020); https://doi.org/10.1038/s41567-020-0906-9
  17. 17. Kitaev, Annals of Physics, 321: 2 (2006); https://doi.org/10.1016/j.aop.2005.10.005
  18. H. Yao and S. A. Kivelson, Phys. Rev. Lett., 99: 247203 (2007); https://doi.org/10.1103/PhysRevLett.99.247203
  19. H. C. Jiang, Z. C. Gu, X. L. Qi, and S. Trebst, Phys. Rev. B, 83: 245104 (2011); https://doi.org/10.1103/PhysRevB.83.245104
  20. S. Trebst, P. Werner, M. Troyer, K. Shtengel, and C. Nayak, Phys. Rev. Lett., 98: 070602 (2007); https://doi.org/10.1103/PhysRevLett.98.070602
  21. J. Vidal, S. Dusuel, and K. P. Schmidt, Phys. Rev. B, 79: 033109 (2009); https://doi.org/10.1103/PhysRevB.79.033109
  22. I. S. Tupitsyn, A. Kitaev, N. V. Prokof’ev, and P. C. E. Stamp, Phys. Rev. B, 82: 085114 (2010); https://doi.org/10.1103/PhysRevB.82.085114
  23. S. Dusuel, M. Kamfor, R. Orus, K. P. Schmidt, and J. Vidal, Phys. Rev. Lett., 106: 107203 (2011); https://doi.org/10.1103/PhysRevLett.106.107203
  24. E. Fradkin and S. H. Shenker, Phys. Rev. D, 19: 3682 (1979); https://doi.org/10.1103/PhysRevD.19.3682
  25. J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner, Phys. Rev. Lett., 112: 207203 (2014); https://doi.org/10.1103/PhysRevLett.112.207203
  26. K. S. Tikhonov and M. V. Feigelman, Phys. Rev. Lett., 105: 067207 (2010); https://doi.org/10.1103/PhysRevLett.105.067207
  27. J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner, Phys. Rev. B, 92: 115127 (2015); https://doi.org/10.1103/PhysRevB.92.115127
  28. V. Lahtinen, New J. Phys., 13: 075009 (2011); https://doi.org/10.1088/1367-2630/13/7/075009
  29. G. Baskaran, S. Mandal, and R. Shankar, Phys. Rev. Lett., 98: 247201 (2007); https://doi.org/10.1103/PhysRevLett.98.247201
  30. J. Knolle and R. Moessner, Annu. Rev. Condens. Matter Phys., 10: 451 (2019); https://doi.org/10.1146/annurev-conmatphys-031218-013401
  31. T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and Matthew P.A. Fisher, Science, 303: 1490 (2004); https://doi.org/10.1126/science.1091806
  32. Anders W. Sandvik, Phys. Rev. Lett., 98: 227202 (2007); https://doi.org/10.1103/PhysRevLett.98.227202
  33. F. N. Bukhanko and A. F. Bukhanko, Physics of the Solid State, 63: 687 (2021); https://doi.org/10.1134/S106378342105005X
  34. N. Read and D. Green, Phys. Rev. B, 61: 10267 (2000); https://doi.org/10.1103/PhysRevB.61.10267
  35. P.-Y. Chang, S. Matsuura, A. P. Schnyder, and S. Ryu, Phys. Rev. B, 90: 174504 (2014); doi:10.1103/PhysRevB.90.174504
  36. D. Lee and A. P. Schnyder, Phys. Rev. B, 93: 064522 (2016); https://doi.org/10.1103/PhysRevB.93.064522
  37. A. Y. Kitaev, Physics-Uspekhi, 44: 131 (2001); https://doi.org/10.1070/1063-7869/44/10S/S29
  38. D. A. Ivanov, Phys. Rev. Lett., 86: 268 (2001); https://doi.org/10.1103/PhysRevLett.86.268
  39. J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. Fisher, Nature Physics, 7: 412 (2011); https://doi.org/10.1038/nphys1915
  40. J. D. Sau, D. J. Clarke, and S. Tewari, Phys. Rev. B, 84: 094505 (2011); https://doi.org/10.1103/PhysRevB.84.094505
  41. P. Kotetes, G. Schon, and A. Shnirman, Journal of the Korean Physical Society, 62: 1558 (2013); https://doi.org/10.3938/jkps.62.1558
  42. J. D. Sau, S. Tewari, and S. Das Sarma, Phys. Rev. A, 82: 052322 (2010); https://doi.org/10.1103/PhysRevA.82.052322
  43. B. I. Halperin, Y. Oreg, A. Stern, G. Refael, J. Alicea, and F. von Oppen, Phys. Rev. B, 85: 144501 (2012); http://dx.doi.org/10.1103/PhysRevB.85.144501
  44. T. Hyart, B. van Heck, I. C. Fulga, M. Burrello, A. R. Akhmerov, and C. W. J. Beenakker, Phys. Rev. B, 88: 035121 (2013); https://doi.org/10.1103/PhysRevB.88.035121
  45. C. V. Kraus, P. Zoller, and M. A. Baranov, Phys. Rev. Lett., 111: 203001 (2013); https://doi.org/10.1103/PhysRevLett.111.203001
  46. X.-J. Liu and A. M. Lobos, Phys. Rev. B, 87: 060504 (2013); https://doi.org/10.1103/PhysRevB.87.060504
  47. C. K. Chiu, M. M. Vazifeh, and M. Franz, EPL (Europhysics Letters), 110: 10001 (2015); https://doi.org/10.1209/0295-5075/110/10001
  48. C. S. Amorim, K. Ebihara, A. Yamakage, Y. Tanaka, and M. Sato, Phys. Rev. B, 91: 174305 (2015); https://doi.org/10.1103/PhysRevB.91.174305
  49. A. Kitaev, Annals of Physics, 303: 2 (2003); https://doi.org/10.1016/S0003-4916(02)00018-0
  50. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys., 80: 1083 (2008); https://doi.org/10.1103/RevModPhys.80.1083
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement