Issues

 / 

2022

 / 

vol. 20 / 

Issue 4

 



Download the full version of the article (in PDF format)

Ahmad Al-Hamdan, Ahmad Al-Falah, Fawaz Al-Deri, Ali Alasmi, Joumaa Merza, Mirna Jabbour, and Waed Abodaboos
Synthesis and Characterization of Polyfurfural Nanoparticle
0971–0982 (2022)

PACS numbers: 61.05.cp, 68.37.Hk, 68.37.Ps, 78.20.Ci, 78.67.Bf, 81.07.Nb, 82.80.Pv

In this paper, polyfurfural is synthesized by hydrochloric acid as catalyst in ethanol. The resulting polymer is characterized by FT/IR, EDS and XPS to determine the polymer structure. By SEM, the morphology of resulting polymer is studied. As found, the polymer consists of globule particles, which clump together and form clusters with average size of about 700 nm. Globule particles are composed of small spherical particles with an average size of 18.6 nm. Polymer thin film is fabricated by anchoring on glass; thin film has rough surface (Rms = 2.12 ± 0.3 nm) and nanoparticles size of 17.8 nm. Based on x-ray diffraction, the crystallization ratio and the nanocrystals’ size (7.42 nm) are calculated. A new method for the determining nanoparticle size from x-ray diffraction data is proposed. The particle size is of 16.18 nm that is less than the size specified by SEM or AFM.

Key words: polyfurfural, polymers’ characterization, XPS, SEM, nanocrystals’ size, nanoparticle size.

https://doi.org/10.15407/nnn.20.04.971

References
  1. S. Saravanan, C. Joseph Mathai, M. R. Anantharaman, S. Venkatachalam, D. K. Avasthi, and F. Singh, Synthetic Metals, 155, No. 2: 315 (2005); https://doi.org/10.1016/j.synthmet.2005.09.006
  2. S. C. Ng, H. S. O. Chan, P. M. L. Wong, K. L. Tan, and B. T. G. Tan, Polymer, 39, No. 20: 4968 (1998); https://doi.org/10.1016/s0032-3861(97)10029-5
  3. B. X. Valderrama-García, E. Rodríguez-Alba, E. G. Morales-Espinoza, K. M. Chane-Ching, and E. Rivera, Molecules, 21, No. 172: 18 (2016); https://doi.org/10.3390/molecules21020172
  4. G. H. Shim and S. H. Foulger, Photonics and Nanostructures Fundamentals and Applications, 10, No. 4: 446 (2012); https://doi.org/10.1016/j.photonics.2011.12.001
  5. J. Li, J. Qiao, and K. Lian, Energy Storage Materials, 3, No. 1: 6 (2019); https://doi.org/10.1016/j.ensm.2019.08.012
  6. S. C. Hernandez, D. Chaudhuri, W. Chen, N. V. Myung, and A. Mulchandani, Electroanalysis, 19, Nos. 19–20: 2125 (2007); https://doi.org/10.1002/elan.200703933
  7. L. Duan, J. Lu, W. Liu, P. Huang, W. Wang, and Z. Liu, Physicochemical and Engineering Aspects, 41, No. 4: 103 (2012); https://doi.org/10.1016/j.colsurfa.2012.08.033
  8. H. Gherras, A. Yahiaoui, A. Hachemaoui, A. Belfeda, A. Dehbi, and A. I. Mourad, Journal of Semiconductors, 39, No. 9: 102001 (2018); https://doi.org/10.1088/1674-4926/39/10/102001
  9. B. S. Dakshayini, K. R. Reddy, A. Mishra, N. P. Shetti, S. J. Malode, S. Basu, and A. V. Raghu, Microchemical Journal, 2, No. 61: 1 (2019); https://doi.org/10.1016/j.microc.2019.02.061
  10. G. Bayramoğlu, M. Karakışla, B. Altçntaş, A. U. Metin, M. Saçak, and M. Y. Arıca, Process Biochemistry, 44, No. 8: 885 (2009); https://doi.org/10.1016/j.procbio.2009.04.011
  11. P. M. Carrasco, H. J. Grande, M. Cortazar, J. M. Alberd, J. Areizaga, and J. A. Pomposa, Synthetic Metals, 156, Nos. 5–6: 425 (2006); https://doi.org/10.1016/j.synthmet.2006.01.005
  12. R. Kumar, S. Singh, and B. C. Yadav, Iarjset, 2, No. 11: 2421 (2015); https://doi.org/10.17148/IARJSET.2016.3206
  13. T. Wei, X. Huang, Q. Zeng, and L. Wang, Journal of Electroanalytical Chemistry, 743, No. 1: 105 (2015); https://doi.org/10.1016/j.jelechem.2015.02.031
  14. Y. Fu, Y. Lin, T. Chen, and L. Wang, Journal of Electroanalytical Chemistry, 687, No. 3: 29 (2012); https://doi.org/10.1016/j.jelechem.2012.09.040
  15. C. J. Mathai, M. Anantharaman, S. Venkitachalam, and S. Jayalekshmi, Thin Solid Films, 416, Nos. 1–2: 15 (2002); https://doi.org/10.1016/s0040-6090(02)00700-9
  16. M. B. Zaman and D. F. Perepichka, The Royal Society of Chemistry, 33, No. 1: 4187 (2005); https://doi.org/10.1039/B506138E
  17. D. Ismiyarto, T. Ngadiwiyana, T. Windarti, R. S. Purbowatiningrum, M. Hapsari, F. H. Rafi’ah, Suyantiand M. S. Haq, IOP Conf. Ser.: Materials Science and Engineering, 172, No. 1: 012027 (2017); https://doi.org/10.1088/1757-899x/172/1/012027
  18. J. Bergström, Mechanics of Solid Polymers, 2, Iss 3: 1 (2015); https://doi.org/10.1016/B978-0-323-31150-2.00002-9
  19. L. Yahia and L. K. Mireles, Characterization of Polymeric Biomaterials, 5, No. 1: 83 (2017); https://doi.org/10.1016/b978-0-08-100737-2.00004-2
  20. A. Al-Hamdan, A. Al-Falah, and F. Al-Deri, International Journal of Thin Films Science and Technology, 10, No. 2: 104 (2021); https://doi.org/10.18576/ijtfst/100205
  21. B. Aziz, S. S. Marf, A. Dannoun, E. M. A. Brza, and R. M. Abdullah, Electrolytes. Polymers, 12, No. 10: 2184 (2020); https://doi.org/10.3390/polym12102184
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement