Issues

 / 

2022

 / 

vol. 20 / 

Issue 4

 



Download the full version of the article (in PDF format)

Aninda Kartika Dewi, Andrie Harmaji, Rinawati Satrio, and Bambang Sunendar
The Effect of Tapioca on Morphological and Mechanical Properties of Metakaolin–Zirconia Geopolymer for Dental Restorative Nanocomposite
0895–0905 (2022)

PACS numbers: 62.20.Qp, 62.23.Pq, 68.37.Hk, 81.07.Pr, 82.35.Np, 87.85.jj, 87.85.Qr

Composite is one of the direct dental restoration materials, which is consisted of three main components such as matrix, filler, and coupling agent. Metakaolin and zirconia are potential alternatives as dental restoration materials. This study aims to determine the characteristics of synthesized metakaolin–zirconia geopolymer nanocomposite with the addition of tapioca as a template. The study is a pure experimental laboratory investigation. The sample is fabricated by means of both the synthesis of metakaolin, zirconia, alkali activator, chitosan and the addition of tapioca of 0.4% v/v, 0.8% v/v, and 1.6% v/v. Alkali solution consisting of NaOH and Na2SiO3 is used to activate the geopolymerization of metakaolin. Nanocomposite characteristics with variations of the addition of tapioca template are then evaluated for its hardness and microstructure. Synthesis of metakaolin–zirconia geopolymer nanocomposite with the addition of tapioca template is successful, and it has a mean hardness value, which has met the hardness value used for dental composite restoration and has the best attachment to artificial teeth. The best hardness value is of 51.70 VHN achieved by the addition of 1.6% v/v tapioca to geopolymer. The resulting SEM images of all samples show a mean particle size of 100 nm indicating that the size is suitable for dental restoration with the value of 5–100 nm.

Key words: tapioca, metakaolin, zirconia, dental restoration, nanocomposite, hardness.

https://doi.org/10.15407/nnn.20.04.895

References
  1. M. S. Gowd, T. Shankar, R. Ranjan, and A. Singh, J. Int. Soc. Prev. Community Dent., 7, No. 7: 1 (2017); https://doi.org/10.4103/jispcd.JISPCD_149_17
  2. L. Rondrang, International Journal of Recent Scientific Research, 11: 6 (2020); https://doi.org/10.24327/ijrsr.2020.1106.5434
  3. E. M. AlHamdan, A. Bashiri, F. Alnashmi, S. Al-Saleh, K. Al-shahrani, S. Al-shahrani, A. Alsharani, K. M. Alzahrani, F. K. Alqarawi, F. Vohra, and T. Abduljabbar, Appl. Sci., 11, No. 21: 10108 (2021); https://doi.org/10.3390/app112110108
  4. A. Kowalska, J. Sokolowski, and K. Bociong, Polymers (Basel), 13, No. 3: 470 (2021); https://doi.org/10.3390/polym13030470
  5. S. Fu, Z. Sun, P. Huang, Y. Li, and N. Hu, Nano Materials Science, 1, No. 1: 2 (2019); https://doi.org/10.1016/j.nanoms.2019.02.006
  6. A. D. de Oliveira and C. A. G. Beatrice, Nanocomposites — Recent Evolutions (London: IntechOpen: 2018); https://doi.org/10.5772/intechopen.81329
  7. O. A. Moskalyuk, A. V. Belashov, Y. M. Beltukov, E. M. Ivan’kova, E. N. Popova, I. V. Semenova, V. Y. Yelokhovsky, and V. E. Yudin, Polymers, 12: 2457 (2020); https://doi.org/10.3390/polym12112457
  8. A. Mahmood et al., Polymers, 13, No. 13: 2099 (2021); https://doi.org/10.3390/polym13132099
  9. T. A. Aiken, J. Kwasny, and W. Sha, Mater. Struct., 53: 115 (2020); https://doi.org/10.1617/s11527-020-01549-x
  10. A. F. El-Saadany, S. M. El-Safty, U. M. Abdel Karim, and E. R. S. Kenawy, Tanta Dent. J., 16m, Iss. 3: 149 (2019); https://doi.org/10.4103/tdj.tdj_22_19
  11. J. Grech and E. Antunes, Journal of Materials Research and Technology, 8, No. 5: 4956 (2019); https://doi.org/10.1016/j.jmrt.2019.06.043
  12. G. A. Martău et al., Polymers, 11: 1837 (2019); https://doi.org/10.3390/polym11111837
  13. I. Kozina, H. Krawiec, M. Starowicz, and M. Kawalec, Int. J. Mol. Sci., 22: 8301 (2021); https://doi.org/10.3390/ijms22158301
  14. P. Jha, K. Dharmalingam, T. Nishizu, N. Katsuno, and R. Anandalakshmi, Starch — Starke, 72, No. 1: 1900121 (2019); https://doi.org/10.1002/star.201900121
  15. A. Harmaji and B. Sunendar, Materials Science Forum, 841: 157 (2016); https://doi.org/10.4028/www.scientific.net/msf.841.157
  16. T. Bakharev, Cem. Concr. Res., 35: 1124 (2005); https://doi.org/10.1016/j.cemconres.2004.06.031
  17. M. Grutzeck, S. Kwan, and M. DiCola, Cem. Concr. Res., 34: 949 (2004); https://doi.org/10.1016/j.cemconres.2003.11.003
  18. D. Koloušek, J. Brus, M. Urbanova, J. Andertova, V. Hulinsky, and J. Vorel, J. Mater. Sci., 42: 9267 (2007); https://doi.org/10.1007/s10853-007-1910-5
  19. J. Brus, L. Kobera, M. Urbanova, D. Kolousek, and J. Kotek, J. Phys. Chem. C, 116: 14627 (2012); https://doi.org/10.1021/jp300181q
  20. B. Kallesten et al., IOP Conf. Ser., Mater. Sci. Eng., 700: 012032 (2019); https://doi.org/10.1088/1757-899X/700/1/012032
  21. A. Khosla, Electrochem. Soc. Interface, 21, No. 3: 67 (2012); https://doi.org/10.1149/2.F04123-4if
  22. S. W. Horstmann, K. M. Lynch, and E. K. Arendt, Foods, 6, No. 4: 29 (2017); https://doi.org/10.3390/foods6040029
  23. Applied Dental Materials (Eds. J. McCabe and A. Walls) (Oxford, UK: Blackwell Pub.: 2008).
  24. Craig’s Restorative Dental Materials (Eds. R. Sakaguchi, J. Ferracane, and J. Powers) (St. Louis, MO: Mosby Elsevier: 2006).
  25. S. Budi, B. A. Suliasih, and I. Rahmawati, Science Asia, 46, No. 4: 457 (2020); https://doi.org/10.2306/scienceasia1513-1874.2020.059
  26. S. V. Panin et al., Materials, 14, No. 5: 1113 (2021); https://doi.org/10.3390/ma14051113
  27. K. C. B. Naidu, N. S. Kumar, P. Banerjee, and B. V. S. Reddy, J. Mater. Sci.: Mater. Med., 32: 68 (2021); https://doi.org/10.1007/s10856-021-06541-7
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement