Issues

 / 

2022

 / 

vol. 20 / 

Issue 4

 



Download the full version of the article (in PDF format)

Ol. D. Zolotarenko, E. P. Rudakova, V. A. Lavrenko, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, Z. A. Matysina, M. T. Gabdullin, M. Ualkhanova, N. A. Gavrylyuk, O. D. Zolotarenko, M. V. Chymbai, and I. V. Zagorulko
Features of Electrochemical (Anode) Synthesis of Nickel and Copper Nanocrystalline Powder
0857–0873 (2022)

PACS numbers: 61.43.Gt, 68.70.+w, 81.05.Rm, 82.45.Cc, 82.45.Fk, 82.45.Gj, 82.45.Hk

Several methods of electrochemical synthesis of nickel (Ni) nanopowder are investigated. As shown, the most efficient and cost-effective method is the electrolysis of nickel sulphate (NiSO4) with appropriate impurities of nickel chloride II (NiCl2), boric acid (H3BO3) and thiourea ((NH4)2CS) using the P-5848 potentiostat as a power source. Ultrahigh-purity aluminium (Al) is used as the cathode, and a platinum plate is served as the anode. The synthesis is performed at temperatures of 45–65°C. After two hours of electrolysis at a current density of 1.0–3.3 A/dm2, nickel nanopowder with an average scale size (scaly particles) of 55 nm is obtained that is confirmed by high-resolution electron microscopy and Raman spectroscopy of high resolution, as well as modern adsorption methods. Electrochemical reactions take place at the cathode (Ni2+ + 2e = Ni) and at the anode (2H2O = O2↑ + 4H+ + 4e). Dendritic copper nanoparticles with high dispersion are also obtained with the possibility of regulating the synthesis of copper nanopowder with a bulk density of 0.4 g/cm3. For this purpose, electrolysis of an electrolyte solution with a relatively low copper content and a high sulphuric acid content is performed at a high cathode current density and a relatively low temperature of a copper sulphate solution (CuSO4). At the same time, a significant amount of copper sludge is removed from the cell by means of the periodic shocks, and the copper anode is shed to the bottom of the bath after 13.3 ampere-hours of current per 1 dm2 of the anode plane. The electrolysis process is continued at a current density of 15.6 A/dm2, and the direction of the current is changed every 20 minutes. In our case, the most appropriate mode of electrolysis is when the cathodes (copper plates) are placed at a distance of 0.8 cm from each other in the electrolyte with 45% H2SO4, 4% CuSO4 and 8% Na2SO4, and the current density at the cathode is of 15.3 A/dm2 at the temperature of 54°C and at the voltage between two copper plates of 0.775 V.

Key words: copper nanopowder, electrochemical synthesis, electrolysis, dendritic copper, nickel nanopowder, sulphuric acid (H2SO4), aluminium (Al) cathode, platinum (Pt) anode, potentiostat, nickel chloride II (NiCl2), boric acid (H3BO3), thiourea (NH4(NH4)2CS), sodium sulphate (Na2SO4), copper sulphate (CuSO4), nickel sulphate (NiSO4).

https://doi.org/10.15407/nnn.20.04.857

References
  1. J. H. de Boer, Dinamicheskiy Kharakter Adsorbtsii [The Dynamic Nature of Adsorption] (Moscow: Izd-vo Inostr. Lit.: 1988) (Russian translation).
  2. A. Yu. Khomenko and S. I. Tkachenko, Opredelenie Udel’noy Poverkhnosti Poristykh Materialov Metodami BET i Araganovicha [Determination of the Specific Surface of Porous Materials by the BET and Araganovich’s Methods] (Moscow: Izd-vo Moscow Inzh.-Tekhn. Inst.: 2014) (in Russian).
  3. M. Gil’debrandt, E. P. Vershinina, and N. V. Marchenko, Metallurgiya Tsvetnykh Metallov [Metallurgy of Ferrous Metals] (Moscow: Izd-vo Literatury po Metallurgii: 2009) (in Russian).
  4. V. N. Antsiferov, F. F. Bezrudnyi, and L. N. Balanchikov, Novye Materialy [New Materials] (Moscow: Metallurgiya: 2002) (in Russian).
  5. R. I. Gusev and A. A. Rempel’, Nanokristallicheskie Materialy [Nanocrystalline Materials] (Moscow: Metallurgiya: 2001) (in Russian).
  6. R. A. Andrievskiy and A. V. Ragulya, Nanostrukturnye Materialy [Nanostructured Materials] (Moscow: RDF: 2005) (in Russian).
  7. G. A. Danjushina, V. G. Shishka, Ju. M. Berezhnoj, P. D. Derlugjan, and V. M. Lipkin, Engineering Journal of Don, Iss. 2, Pt. 2 (2015); http://www.ivdon.ru/en/magazine/archive/n2p2y2015/3100
  8. Ye. S. Zotova, Issledovanie Stroyeniya i Svoystv Nanoporoshkov na Osnove Medi, Obladayushchikh Biologicheskoy Aktivnost’yu [Study of the Structure and Properties of Copper-Based Nanopowders with Biological Activity] (Thesis of Disser. for PhD Techn. Sci.) (Central Research Institute of Ferrous Metallurgy Named After I. P. Bardina: 2008) (in Russian).
  9. A. I. Gusev, Nanomaterialy, Nanostruktury, Nanotekhnologii [Nanomaterials, Nanostructures, Nanotechnologies] (Moscow: Fiz.-Mat. Izdat.: 2005) (in Russian).
  10. N. K. Yeremenko, Sposob Polucheniya Nanodispersnogo Poroshka Medi [Method for Producing of Nanodispersed Copper Powder]: Patent No. S22V15; 2426805 (in Russian).
  11. N. S. Anikina, O. Ya. Krivushchenko, D. V. Schur, S. Yu. Zaginajchenko, S. S. Chuprov, K. A. Mil’to, and A. D. Zolotarenko, Proc. of IX Int. Conf. ‘Hydrogen Materials Science and Chemistry of Metal Hydrides (September 5–11, 2005, Sevastopol, Crimea, Ukraine) (in Russian), p. 848.
  12. N. S. Anikina, S. Yu. Zaginajchenko, M. I. Maistrenko, A. D. Zolotarenko, G. A. Sivak, and D. V. Schur, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials (2005), vol. 172, p. 207.
  13. Z. A. Matysina, S. Yu. Zaginaychenko, and D. V. Schur, Rastvorimost’ Primesey v Metallakh, Splavakh, Intermetallidakh, Fulleritakh [Solubility of Impurities in Metals, Alloys, Intermetallics, Fullerites] (Dnepropetrovsk: Nauka i Obrazovanie: 2006) (in Russian).
  14. N. S. Anikina, D. V. Schur, S. Y. Zaginaichenko, and A. D. Zolotarenko, Proc. of 10th International Conference ‘Hydrogen Materials Science and Chemistry of Carbon Nanomaterials’ (September 22–28, 2007, Sudak, Crimea, Ukraine), p. 680.
  15. N. S. Anikina, D. V. Schur, S. Y. Zaginaichenko, A. D. Zolotarenko, and O. Ya. Krivushenko, Proc. of 10th International Conference ‘Hydrogen Materials Science and Chemistry of Carbon Nanomaterials’ (September 22–28, 2007, Sudak, Crimea, Ukraine), p. 676.
  16. D. V. Schur, S. Y. Zaginaichenko, and A. D. Zolotarenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science Series (2008), p. 85.
  17. D. V. Schur, S. Y. Zaginaichenko, A. D. Zolotarenko, and T. N. Veziroglu, Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science Series (2008), p. 85.
  18. D. V. Schur, S. Yu. Zaginaichenko, E. A. Lysenko, T. N. Golovchenko, and N. F. Javadov, Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science Series (2008).
  19. A. D. Zolotarenko D. V. Schur, S. Yu. Zaginajchenko, N. S. Anikina, Z. A. Matysina, O. Ya. Krivushchenko, V. V. Skorokhod, An. D. Zolotarenko, and Al. D. Zolotarenko, Kniga Tezisov XI Mezhd. Konf. ‘Vodorodnoye Materialovedenie i Khimiya Uglerodnykh Nanomaterialov’ (Yalta, Krym, Ukraina: 2009), p. 606 (in Russian).
  20. N. A. Gavryljuk, N. E. Akhanova, D. V. Shhur, A. P. Pomytkin, A. Veziroglu, T. N. Veziroglu, M. T. Gabdullin, T. S. Ramazanov, Al. D. Zolotarenko, and An. D. Zolotarenko, Al’ternativnaya Ehnergetika i Ehkologiya (ISJAEE), 01–03: 47 (2021) (in Russian); https://doi.org/10.15518/isjaee.2021.01.004
  21. N. Ye. Akhanova, D. V. Shchur, A. P. Pomytkin, Al. D. Zolotarenko, An. D. Zolotarenko, N. A. Gavrylyuk, M. Ualkhanova, W. Bo, and D. Ang, J. Nanosci. Nanotechnol., 21, No. 4: 2435 (2021); https://doi.org/10.1166/jnn.2021.18970
  22. A. G. Dubovoy, A. O. Perekos, V. A. Lavrenko, Yu. M. Rudenko, T. V. Efimova, V. P. Zaluts’kyy, T. V. Ruzhitska, A. V. Kotko, Al. D. Zolotarenko, and An. D. Zolotarenko, Nanosistemi, Nanomateriali, Nanotehnologii, 11, No. 1: 131 (2013) (in Russian); https://www.imp.kiev.ua/nanosys/media/pdf/2013/1/nano_vol11_iss1_p0131p0140_2013.pdf
  23. V. A. Lavrenko, I. A. Podchernyayeva, D. V. Shchur, An. D. Zolotarenko, and Al. D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 56, Nos. 9–10: 504 (2018); https://doi.org/10.1007/s11106-018-9922-z
  24. S. Yu. Zaginajchenko, D. V. Schur, M. T. Gabdullin, N. F. Dzhavadov, Al. D. Zolotarenko, An. D. Zolotarenko, A. D. Zolotarenko, S. H. Mamedova, G. D. Omarova, and Z. T. Mamedova, Al’ternativnaya Ehnergetika i Ehkologiya (ISJAEE), 19–21: 72 (2018) (in Russian); https://doi.org/10.15518/isjaee.2018.19-21.072-090
  25. N. Y. Akhanova, D. V. Shchur, A. P. Pomytkin, Al. D. Zolotarenko, An. D. Zolotarenko, N. A. Gavrylyuk, M. Ualkhanova, W. Bo, and D. Ang, J. Nanosci. Nanotechnol., 21, No. 4: 2446 (2021); doi:10.1166/jnn.2021.18971
  26. N. Akhanova, S. Orazbayev, M. Ualkhanova, A. Y. Perekos, A. G. Dubovoy, D. V. Schur, Al. D. Zolotarenko, An. D. Zolotarenko, N. A. Gavrylyuk, M. T. Gabdullin, and T. S. Ramazanov, Journal of Nanoscience and Nanotechnology Applications, 3, No. 3: 1 (2019); doi:10.18875/2577-7920.3.302
  27. I. V. Korotash, Eh. M. Rudenko, M. M. Nyshchenko, G. P. Prikhod’ko, O. I. Rzheshevska, and N. A. Gavrylyuk, Metallofiz. Noveishie Tekhnol., 29, No. 7: 849 (2007).
  28. S. P. Lykhtorovich, M. M. Nyshchenko, I. E. Galstyan, Eh. M. Rudenko, I. V. Korotash, O. I. Rzheshevska, G. P. Prikhodko, and N. A. Gavrylyuk, Metallofiz. Noveishie Tekhnol, 32, No. 4: 475 (2010).
  29. Y. M. Shulga, V. M. Martynenko, A. V. Krestinin, A. P. Kharitonov, G. I. Davidova, E. I. Knerelman, V. I. Krastev, and D. V. Schur, International Journal of Hydrogen Energy, 36, No. 1: 1349 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.084
  30. D. V. Schur, A. D. Zolotarenko, A. D. Zolotarenko, O. P. Zolotarenko, M. V. Chimbai, N. Y. Akhanova, M. Sultangazina, and E. P. Zolotarenko, Physical Sciences and Technology, 6, Nos. 1–2: 46 (2019); https://doi.org/10.26577/phst-2019-1-p9
  31. G. P. Prikhod’ko, N. A. Gavrylyuk, L. V. Diyakon, M. P. Kulish, A. V. Melezhik, and Yu. I. Sementsov, Nanosistemi, Nanomateriali, Nanotehnologii, 4, No. 4: 1081 (2006) (in Russian).
  32. Yu. I. Sementsov, N. A. Gavrilyuk, G. P. Prikhod’ko, A. V. Melezhyk, M. L. Pyatkovsky, V. V. Yanchenko, S. L. Revo, E. A. Ivanenko, and A. I. Senkevich, Chemistry and Biology, 757 (2007).
  33. N.A.Gavrylyuk,T.A.Alekseyeva,O.M.Lazarenko,Yu.I.Sementsov,andV.V. Yanchenko, Nanosistemi, Nanomateriali, Nanotehnologii, 5, No. 2: 409 (2007) (in Russian).
  34. Y. I. Sementsov, N. A. Gavriluk, G. P. Prikhod’ko, and T. A. Aleksyeyeva, Carbon Nanomaterials in Clean Energy Hydrogen Systems, 327 (2008).
  35. Yu. M. Shul’ga, S. A. Baskakov, A. D. Zolotarenko, E. N. Kabachkov, V. E. Muradyan, D. N. Voylov, V. A. Smirnov, V. M. Martynenko, D. V. Shchur, and A. P. Pomytkin, Nanosistemi, Nanomateriali, Nanotehnologii, 11, No. 1: 161 (2013) (in Russian); https://www.imp.kiev.ua/nanosys/media/pdf/2013/1/nano_vol11_iss1_p0161p0171_2013.pdf
  36. A. A. Volodin, A. D. Zolotarenko, A. A. Belmesov, E. V. Gerasimova, D. V. Sñhur, V. R. Tarasov, S. Yu. Zaginaichenko, S. V. Doroshenko, An. D. Zolotarenko, and Al. D. Zolotarenko, Nanosistemi, Nanomateriali, Nanotehnologii, 12, No. 4: 705 (2014) (in Russian); https://www.imp.kiev.ua/nanosys/media/pdf/2014/4/nano_vol12_iss4_p0705p0714_2014.pdf
  37. D. V. Schur, S. Y. Zaginaichenko, and T. N. Veziroglu, International Journal of Hydrogen Energy, 40, No. 6: 2742 (2015); https://doi.org/10.1016/j.ijhydene.2014.12.092
  38. D. V. Schur, S. Y. Zaginaichenko, A. F. Savenko, V. A. Bogolepov, N. S. Anikina, A. D. Zolotarenko, Z. A. Matysina, N. Veziroglu, and N. E. Scryabina, International Journal of Hydrogen Energy, 36, No. 1: 1143 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.087
  39. D. V. Schur and V. A. Lavrenko, Vacuum, 44, No. 9: 897 (1993); https://doi.org/10.1016/0042-207X(93)90247-8
  40. Z. A. Matysina, O. S. Pogorelova, S. Yu. Zaginaichenko, and D. V. Schur, Journal of Physics and Chemistry of Solids, 56, No. 1: 9 (1995); https://doi.org/10.1016/0022-3697(94)00106-5
  41. Z. A. Matysina, S. Yu. Zaginaichenko, and D. V. Schur, International Journal of Hydrogen Energy, 21, Nos. 11–12: 1085 (1996); https://doi.org/10.1016/S0360-3199(96)00050-X
  42. Yu. M. Lytvynenko, and D. V. Schur, Renewable Energy, 16, No. 1: 753 (1999); https://doi.org/10.1016/S0960-1481(98)00272-9
  43. Z. A. Matysina and D. V. Shchur, Russian Physics Journal, 44, No. 11: 1237 (2001); https://doi.org/10.1023/A:1015318110874
  44. Z. A. Matysina, S. Y. Zaginajchenko, D. V. Shhur, A. D. Zolotarenko, Al. D. Zolotarenko, and T. M. Gabdullin, Al’ternativnaya Ehnergetika i Ehkologiya, 13–15: 37 (2017) (in Russian); https://doi.org/10.15518/isjaee.2017.13-15.037-060
  45. Z. A. Matysina, S. Y. Zaginaichenko, D. V. Schur, Al. D. Zolotarenko, An. D. Zolotarenko, and M. T. Gabdullin, Russian Physics Journal, 61, No. 2: 253 (2018); https://doi.org/10.1007/s11182-018-1395-5
  46. Z. A. Matysina, S. Y. Zaginaichenko, D. V. Schur, T. N. Veziroglu, A. Veziroglu, M. T. Gabdullin, Al. D. Zolotarenko, and An. D. Zolotarenko, International Journal of Hydrogen Energy, 43, No. 33: 16092 (2018); https://doi.org/10.1016/j.ijhydene.2018.06.168
  47. D. V. Schur, A. Veziroglu, S. Y. Zaginaychenko, Z. A. Matysina, T. N. Veziroglu, M. T. Gabdullin, T. S. Ramazanov, An. D. Zolotarenko, and Al. D. Zolotarenko, International Journal of Hydrogen Energy, 44, No. 45: 24810 (2019); https://doi.org/10.1016/j.ijhydene.2019.07.205
  48. Z. A. Matysina, N. A. Gavrylyuk, M. Ò. Kartel, A. Veziroglu, T. N. Veziroglu, A. P. Pomytkin, D. V. Schur, T. S. Ramazanov, M. T. Gabdullin, An. D. Zolotarenko, Al. D. Zolotarenko, and N. A. Shvachko, International Journal of Hydrogen Energy, 46, No. 50: 25520 (2021); https://doi.org/10.1016/j.ijhydene.2021.05.069
  49. D. V. Shchur, S. Yu. Zaginaichenko, Ayfer Veziroglu, T. N. Veziroglu, N. A. Gavrylyuk, A. D. Zolotarenko, M. T. Gabdullin, T. S. Ramazanov, Al. D. Zolotarenko, and An. D. Zolotarenko, Russian Physics Journal, 64, No. 1: 89 (2021); https://doi.org/10.1007/s11182-021-02304-7
  50. An. D. Zolotarenko, Al. D. Zolotarenko, A. Veziroglu, T. N. Veziroglu, N. A. Shvachko, A. P. Pomytkin, N. A. Gavrylyuk, D. V. Schur, T. S. Ramazanov, and M. T. Gabdullin, International Journal of Hydrogen Energy, 47, Iss. 11: 7281 (2021); https://doi.org/10.1016/j.ijhydene.2021.03.025
  51. S. Yu. Zaginaichenko, Z. A. Matysina, D. V. Schur, and A. D. Zolotarenko, International Journal of Hydrogen Energy, 37, No. 9: 7565 (2012); https://doi.org/10.1016/j.ijhydene.2012.01.006
  52. D. V. Schur, M. T. Gabdullin, V. A. Bogolepov, A. Veziroglu, S. Yu. Zaginaichenko, A. F. Savenko, and K. A. Meleshevich, International Journal of Hydrogen Energy, 41, No. 3: 1811 (2016); https://doi.org/10.1016/j.ijhydene.2015.10.011
  53. D. V. Schur, N. S. Astratov, A. P. Pomytkin, and A. D. Zolotarenko, Trudy VIII Mezhdunarodnoy Konferentsii ‘Vodorodnoye Materialovedenie i Khimiya’ (September 14–20, 2003, Sudak, Crimea, Ukraine), p. 424 (in Russian).
  54. S. A. Tikhotskii, I. V. Fokin, and D. Yu. Schur, Izvestiya, Physics of the Solid Earth, 47, No. 4: 327 (2011); https://doi.org/10.1134/S1069351311030062
  55. V. A. Lavrenko, D. V. Shchur, A. D. Zolotarenko, and A. D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 57, No. 9: 596 (2019); https://doi.org/10.1007/s11106-019-00021-y
  56. Yu. S. Semenyuk, I. I. Obraztsova, and N. K. Yeremenko, Sposoby Polucheniya Nanodispersnykh Poroshkov [Methods for Obtaining Nanodispersed Powders] (Moscow: Nauka: 2005) (in Russian)
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement