Issues

 / 

2022

 / 

vol. 20 / 

Issue 2

 



Download the full version of the article (in PDF format)

Namrata Jha, Sonia Johri, Sadhana Shrivastava, Poonam Gupta, and Kamini Yadav
Therapeutic Approach of Watermelon (Citrullus lanatus) Rind: Biosynthesis and Characterization of Selenium Nanoparticles
0549–0567 (2022)

PACS numbers: 78.67.Bf, 81.07.Pr, 81.70.Pg, 87.14.ej, 87.19.xj, 87.64.Cc, 87.85.Rs

Watermelon (Citrullus lanatus) is a cheap and easily available fruit in the local markets of India. The rind, which is the outer layer of watermelon, is completely edible. It is the only fruit with 90% of water and is fully edible including its rind and seeds as they contain different types of nutrients, which are needed by human body in day-to-day life. The benefits in human body include reduced blood pressure, presence of different types of vitamins (such as vitamin A, B and C) as well as different types of minerals required by human body. The present study aims in evaluating the presence of different secondary metabolites in the watermelon rind. The therapeutic efficacy of watermelon rind against acrylamide toxicity in the lymphocyte cell line is studied. As selenium is an important micronutrient, an attempt has been made to prepare the selenium nanoparticles followed by its characterization.

Key words: selenium nanoparticles, UV and visible radiations, FTIR, DSC, PSA.

https://doi.org/10.15407/nnn.20.02.549

References
1. V. Alagesan and S. Venugopal, Bio Nano Sci., 9: 105 (2019); https://doi.org/10.1007/s12668-018-0566-8
2. C. Worarat and G. Wandee, J. Sci. Technol., 31, No. 4: 419 (2009).
3. M. Yazhiniprabha and B. Vaseeharan, Mater. Sci. Eng. C: Mater. Biol. Appl., 103: 109763 (2019); https://doi.org/10.1016/j.msec.2019.109763
4. R. Lakshmipathy, P. Reddy, B. Sarada et al., Appl. Nanosci., 5: 223 (2015); https://doi.org/10.1007/s13204-014-0309-2
5. J. K. Patra and K. H. Baek, Int. J. Nanomed., 10: 7253 (2015); https://doi.org/10.2147/IJN.S95483
6. M. Huang, J. Jiao, J. Wang, Z. Xia, and Y. Zhang, Environ. Pollut., 234: 656 (2018); https://doi.org/10.1016/j.envpol.2017.11.095
7. M. Kianfar, A. Nezami, S. Mehri, H. Hosseinzadeh, A. W. Hayes, and G. Karimi, Drug & Chem. Tox., 43, Iss. 6: 595 (2018); https://doi.org/10.1080/01480545.2018.1536140
8. M. Kopanska, R. Muchacka, J. Czecha, M. Batoryna, and G. Formicki, J. Physiol. Pharmacol., 60, No. 6: 847 (2018); https://doi.org/10.26402/jpp.2018.6.03
9. J. Kumar, S. Das, and S. L. Teoh, Front. Nut., 5: Article 14 (2018); https://doi.org/10.3389/fnut.2018.00014 10. E. Zamani, M. Shokrzadeh, and A. Ziar, S. Abedian-Kenari, and F. Shaki, Hum. Exp. Toxicol., 37, No. 8: 859 (2018); https://doi.org/10.1177/0960327117741753
11. R. Kirupagaran, A. Saritha, and S. Bhuvaneswari, J. NanoSci. Tech., 2, No. 5: 224 (2016).
12. A. Khurana, S. Tekula, M. A. Saifi, P. Venkatesh, and C. Godugu, Biomed. Pharmacother., 111: 802 (2019); https://doi.org/10.1016/j.biopha.2018.12.146
13. G. Sharma, A. R. Sharma, R. Bhavesh, J. Park, B. Ganbold, J. S. Nam, and S. S. Lee, Molecules, 19, No. 3: 2761 (2014); https://doi.org/10.3390/molecules19032761
14. W. Zhang, Z. Chen, H. Liu, L. Zhang, P. Gao, and D. Li, Col. Surf. B: Biointerfaces, 88, No. 1: 196 (2011); https://doi.org/10.1016/j.colsurfb.2011.06.031
15. M. Navarro-Alarcon and C. Cabrera-Vique, Sci. Total. Environ., 400, Nos. 1–3: 115 (2008); https://doi.org/10.1016/j.scitotenv.2008.06.024
16. L. Gunti, R. S. Dass, and N. K. Kalagatur, Front. Microbiol., 10: 931 (2019); https://doi.org/10.3389/fmicb.2019.00931
17. K. Yamasaki, A. Hashimoto, Y. Kokusenya, T. Miyamoto, and T. Sato, Chem. Pharm. Bull., 42, No. 8: 1663 (1994); https://doi.org/10.1248/cpb.42.1663
18. R. S. Kumar, C. Venkateshwar, G. Samuel, and S. G. Rao, Int. J. Eng. Sci. Invent., 2, No. 8: 2319 (2013).
19. S. Ali, M. R. Khan, Irfanullah, M. Sajid, and Z. Zahra, BMC Complement. Altern. Med., 18: Article No. 43 (2018); https://doi.org/10.1186/s12906-018-2114-z
20. N. Srivastava and M. Mukhopadhyay, J. Clust. Sci., 26: 1473 (2015); https://doi.org/10.1007/s10876-014-0833-y
21. Q. Chu, W. Chen, R. Jia, X. Ye, Y. Li, Y. Liu, Y. Jiang, and X. Zheng, J. Hazardous Mat., 393: 122364 (2020); https://doi.org/10.1016/j.jhazmat.2020.122364
22. S. S. Ngema, A. K. Basson, and T. S. Maliehe, Physics and Chemistry of the Earth, Parts A/B/C, 115: 102821 (2020); https://doi.org/10.1016/j.pce.2019.102821
23. R. Pascua-Maestro, E. Gonzalez, C. Lillo, M. D. Ganfornina, J. M. Falcon-Perez, and D. Sanchez, Front. Cell Neurosci., 12: 526 (2019); https://doi.org/10.3389/fncel.2018.00526
24. H. B. Li, Y. Jiang, C. C. Wong, K. W. Cheng, and F. Chen, Anal. Bioanal. Chem., 388, No. 2: 483 (2007); https://doi.org/10.1007/s00216-007-1235-x
25. N. Srivastava and M. Mukhopadhyay, Pow. Tech., 244: 26 (2013); https://doi.org/10.1016/j.powtec.2013.03.050
26. F. Tateo and M. C. Bononi, Ital. J. Food Sci., 15: 149 (2003).
27. N. C. Bell, C. Minelli, and A. G. Shard, Anal. Methods, 5: 4591 (2013); https://doi.org/10.1039/C3AY40771C
28. M. Kazemi, A. Akbari, H. Zarrinfar et al., J. Inorg. Organomet. Polym., 30: 3036 (2020); https://doi.org/10.1007/s10904-020-01462-4
29. S. D. Clas, C. R. Dalton, and B. C. Hancock, Pharm. Sci. Technol. Today, 2, No. 8: 311 (1999); https://doi.org/10.1016/s1461-5347(99)00181-9
30. P. M. Rolim, G. P. Fidelis, C. E. A. Padilha, E. S. Santos, H. A. O. Rocha, and G. R. Macedo, Braz. J. Med. Biol. Res., 51, No. 4: 1414 (2018); https://doi.org/10.1590/1414-431x20176069
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement