Issues

 / 

2022

 / 

vol. 20 / 

Issue 1

 



Download the full version of the article (in PDF format)

Î. ². Pylypenko
Fabrication of Oxide Coatings on Titanium Alloy Ti6Al4V by Electrochemical Oxidation in Succinic Acid Solutions
0111–0126 (2022)

PACS numbers: 81.16.Pr, 81.65.Mq, 81.65.Rv, 82.45.Bb, 82.45.Yz, 87.85.jj, 87.85.Rs

The research data relating to the peculiarities of formation of the thin interference-coloured oxide films on the Ti6Al4V alloy in amber acid water solutions are presented. The research done results in kinetic dependences, which show the changes in the cell voltage during the electrolysis and which allow us to track the dynamics of formation of the oxide layer on the alloy. As established, the pattern of change in the cell voltage behaviour, which corresponds to that of forming dependence of the alloy electrooxidation, depends on the acid concentration in the solution and on the anode current-density value. For the acid concentration of 0.5 to 5 g/dm3 and the current density ja of 0.8 to 1.5 mÀ/cm2, the continuous oxide film is not formed on the alloy surface and the specified cell voltage value is not attained, and this is conditioned by the formation of titanium oxides at intermediate oxidation levels. An increase in ja up to the values of 2 mA/ñm2 and higher with simultaneous increase in the acid concentration exceeding 5 g/dm3 conditions a linear behaviour of kinetic dependences, and it is indicative of formation of the continuous oxide films on the alloy surface; concurrently, a partial film destruction is observed for the solutions of a lower concentration. The obtained data are confirmed by electrochemical-measurement data that enables the establishment of the availability of the areas on polarization curves, which correspond to the formation of intermediate oxides. The experimental data obtained for the alloy oxidation in the stationary galvanostatic mode indicate that the alloy oxidation rate at ja > 2 mA/ñm2 is linearly proportional to the current density. A maximum thickness value of the oxide film obtained for the given conditions is determined by attained cell voltage value, and it is not dependent on other electrolysis parameters (current density and concentration). The coulometric data obtained during the electrolysis enable both the calculation of the thickness of obtained films and the establishment of the correspondence between this parameter and the cell voltage value. The thickness of obtained films is varied in the range of 72 to 215 nm that is two orders of magnitude higher than the film thickness of natural origin. The oxide film-tinting colour is determined by the specified value of formation voltage, and it is not dependent on the current density and the carbon acid concentration. The obtained data are explained by the formation of oxide films in galvanostatic mode occurring in the presence of the constant potential gradient in the oxide. An increase in the value of voltage applied to the cell conditions a proportional growth in a maximum oxide thickness due to an increase in the amount of energy passed through the cell and an appropriate increase in the mass of oxidized metal. The obtained data allow us to assert that the choice of the modes for the anodic oxidation of alloy required for the development of the technology of the electrochemical oxidation of titanium implants should be based on the research data about the functional properties of obtained coatings.

Key words: electrochemical oxidation, implant, oxide film, titanium dioxide, barrier layer, surface modification, biocompatible coating.

https://doi.org/10.15407/nnn.20.01.111

References
1. Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, Materials, 7, Iss. 3: 1709 (2014); https://doi:10.3390/ma7031709
2. J. Fojt, Appl. Surf. Sci., 262: 163 (2020); https://doi:10.1016/j.apsusc.2012.04.012
3. G. M. Rodriguez, J. Bowen, M. Zelzerc, and A. Stamboulis, RSC Adv., 10: 17642 (2020); https://doi.org/10.1039/C9RA11000C
4. S. Cometa, M. A. Bonifacio, M. Mattioli-Belmonte, L. Sabbatini, and E. D. Giglio, Coatings, 9: 268 (2019); https://doi:10.3390/coatings9040268
5. A. M. Khorasani, M. Goldberg, E. H. Doeven, and G. Littlefair, J. Biomater. Tiss. Eng., 5: 593 (2015); https://doi:10.1166/jbt.2015.1361
6. M. Khadiri, M. Elyaagoubi, R. Idouhli, Y. Koumya, O. Zakir, J. Benzakour, A. Benyaich, A. Abouelfida, and A. Outzourhit, Adv. Mat. Sci. Eng., 2020: 5769071 (2020); https://doi.org/10.1155/2020/5769071
7. B. S. Gugelmin, L. S. Santos, H. d. A. Ponte, and C. E. B. Ma-rino, Mat. Res., 18, No. 3: 602 (2015); https://doi.org/10.1590/1516-1439.201514
8. G. Louarn, L. Salou, A. Hoornaert, and P. Layrolle, J. Mat. Res., 34, Iss. 11: 1892 (2019); https://doi.org/10.1557/jmr.2019.39
9. J. Liu, J. Liu, S. Attarilar, C. Wang, M. Tamaddon, C. Yang, K. Xie, J. Yao, L. Wang, C. Liu, and Y. Tang, Front. Bioeng. Bio-technol., (2020); https://doi.org/10.3389/fbioe.2020.576969
10. M. Jin, S. Yao, L.-N. Wang, Y. Qiao, and A. A. Volinsky, Surf. Coat. Tech., 304: 459 (2016); https://doi.org/10.1016/j.surfcoat.2016.05.038
11. S. Kavitha, R. S. Nivedita, A. John, and M. Lakshmi, AIP Con-ference Proceedings, 2082: 050007 (2019); https://doi.org/10.1063/1.5093867
12. V. A. Nebol’sin, B. A. Spiridonov, A. I. Dunaev, and E. V. Bog-danovich, Inorg. Mat., 53: 595 (2017); https://doi.org/10.1134/S0020168517060139
13. M. T. Mohammed, Z. A. Khan, and A. N. Siddiqueeb, Proc. Mat. Sci., 6: 1610 (2014); https://doi.org/10.1016/j.mspro.2014.07.144
14. M. Ivashchenko, O. Smirnova, S. Kyselova, S. Avina, A. Sincheskul, and A. Pilipenko, EEJET, 5, No. 6: 21 (2018); https://doi.org/10.15587/1729-4061.2018.143793
15. M. V. Diamanti, M. Ormellese, and M.-P. Pedeferri, J. Exp. Na-nosci., 10, Iss. 17: 1285 (2015); https://doi.org/10.1080/17458080.2014.999261
16. A. Pilipenko, H. Pancheva, V. Deineka, R. Vorozhbiyan, and M. Chyrkina, EEJET, 3, No. 6: 33 (2018); https://doi.org/10.15587/1729-4061.2018.132521
17. A. Pilipenko, A. Maizelis, H. Pancheva, and Y. Zhelavska, Chem. Chem. Tech., 14: 221 (2020); https://doi.org/10.23939/chcht14.02.221
18. A. A. Al-Swayih, Orient. J. Chem., 32, No. 6: 2841 (2016); http://dx.doi.org/10.13005/ojc/320602
19. J. Lu, G. Wei, Yu. Yu, X. Zhao, and Yi. Dai, Int. J. Electro-chem. Sci., 12: 2763 (2017); http://www.electrochemsci.org/papers/vol12/120402763.pdf
20. A. Pilipenko, O. Smirnova, S. Gura, O. Skorynina-Pohrebna, O. Khoroshev, and T. Shkolnikova, T., ARPN J. Eng. Appl. Sci., 15: 1657 (2020).
21. A. Aladjem, J. Mat. Sci., 8: 688 (1973); https://doi.org/10.1007/BF00561225
22. Z. J. Liu, X. Zhong, J. Walton, and G. E. Thompson, J. Electro-chem. Soc., 163, Iss. 3: E75 (2016); https://doi:10.1149/2.0181603jes.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement