Issues

 / 

2022

 / 

vol. 20 / 

Issue 1

 



Download the full version of the article (in PDF format)

O. M. Bordun, I. O. Bordun, I. M. Kofliuk, I. Yo. Kukharskyy, I. I. Medvid, Zh. Ya. Tsapovska, and D. S. Leonov
Surface Morphology of Y2O3:Eu Thin Films at Different Activator Concentrations
0091–0096 (2022)

PACS numbers: 61.05.cp, 61.72.Ff, 61.72.Mm, 68.35.Ct, 68.37.Ps, 68.55. J-, 81.15.Cd

Atomic force microscopy is used to study the surface morphology of thin Y2O3:Eu films obtained by the radio-frequency ion-plasma sputtering with an activator concentration of 1.0, 2.5, and 5 mol.%. Based on the analysis of the obtained results, an almost linear dependence of the sizes of surface structures on the value of the activator concentration and a superlinear increase in both the root-mean-square surface roughness and the average distance between grains are revealed. The obtained results are discussed.

Key words: yttrium oxide, activator, thin films, nanocrystallites.

https://doi.org/10.15407/nnn.20.01.091

References
1. N. Harada, A. Ferrier, D. Serrano, M. Persechino, E. Briand, R. Bachelet, I. Vickridge, J. J. Ganem, Ph. Goldner, and A. Tal-laire, J. Appl. Phys., 128, No. 5: 055304 (2020); https://doi.org/10.1063/5.0010833
2. F. C. B. Martins, E. Firmino, L. S. Oliveira, N. O. Dantas, A. C. Almeida Silva, H. P. Barbosa, T. K. L. Rezende, M. Sousa Goes, M. A. Coutos dos Santos, L. F. Cappa de Oliveira, and J. L. Ferrari, Mater. Chem. Phys., 277: 125498 (2022); https://doi.org/10.1016/j.matchemphys.2021.125498
3. M. Scarafagio, A. Tallaire, K.-J. Tielrooij, D. Cano, A. Grishin, M.-H. Chavanne, F. H. L. Koppens, A. Ringuede, M. Cassir, D. Serrano, P. Goldner, and A. Ferrier, J. Phys. Chem. C, 123, No. 21: 13354 (2019); https://doi.org/10.1021/acs.jpcc.9b02597
4. J. Rosa, M. J. Heikkila, M. Sirkia, and S. Merdes, Materials, 14, No. 6: 1505 (2021); https://doi.org/10.3390/ma14061505
5. O. M. Bordun, I. O. Bordun, I. Yo. Kukharskyy, Zh. Ya. Tsapovska, and M. V. Partyka, J. Appl. Spectroscopy, 84, No. 6: 1072 (2018); https://doi.org/10.1007/s10812-018-0589-5
6. H. M. Abdelaal, A. Tawfik, and A. Shaikjee, Mater. Chem. Phys., 242: 122530 (2020); https://doi.org/10.1016/j.matchemphys.2019.122530
7. O. M. Bordun and I. M. Bordun, Optika i Spektroskopiya, 88, No. 5: 775 (1997) (in Russian). 8. Hai Guo and Yan Min Qiao, Optical Materials, 31, No. 4: 583 (2009); https://doi.org/10.1016/j.optmat.2008.06.011
9. O. M. Bordun, B. O. Bordun, I. M. Kofliuk, I. Yo. Kukharskyy, I. I. Medvid, and M. V. Protsak, Proceedings. 2021 IEEE XIIth International Conference on Electronics and Information Tech-nologies (ELIT) (May 19–21, 2021, Lviv), p. 33.
10. E. V. Berlin and L. A. Seydman, Ionno-Plazmennyye Protsessy v Tonkoplyonochnoy Tekhnologii [Ion-Plasma Processes in Thin Film Technology] (Moscow: Tekhnosfera: 2010) (in Russian).
11. O. M. Bordun, I. O. Bordun, and I. Yo. Kukharskyy, J. Appl. Spectroscopy, 82, No. 3: 390 (2015); https://doi.org/10.1007/s10812-015-0118-8
12. G. W. Collins, S. A. Letts, E. M. Fearon, R. L. McEachern, and T. P. Bernat, Phys. Rev. Lett., 73, No. 5: 708 (1994); https://doi.org/10.1103/PhysRevLett.73.708
13. P. A. Arutyunov, A. L. Tolstikhina, and V. N. Demidov, Za-vodskaya Laboratoriya. Diagnostika Materialov, 65, No. 9: 27 (1999) (in Russian).
14. A. V. Mitrofanov, O. V. Karban, A. Sugonyako, and M. Lubomska, J. Synch. Investig., 3: 519 (2009); https://doi.org/10.1134/S1027451009040065 .
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement