Issues

 / 

2022

 / 

vol. 20 / 

Issue 1

 



Download the full version of the article (in PDF format)

V. I. Teslenko and O. L. Kapitanchuk
Comparison of Strength and Competitiveness of Different-Length Carbon Fibres Equipped with Self-Healing Mechanism
0045–0056 (2022)

PACS numbers: 02.70.-c, 05.70.Ln, 61.48.De, 62.23.Hj, 62.25.Mn, 81.05.Lg, 83.10.Tv

Based on a three-stage kinetic model for description of deformation of a one-dimensional chain under tension in a plastic range, being applied to the decay of defects in a single carbon fibre within the one-defect approximation, the dependence of failure probability on tensile stress is obtained. A comparison of strength and competitiveness for the two different-length carbon fibres equipped with self-healing mechanism is carried out. Concerning with a numerical simulation of the theoretical failure distributions by the use of the accessible experimental data, it is shown that, in comparison with the longer carbon fibre, the shorter carbon fibre is advantageous in strength since the stress-distribution curve for the latter is on the right side, and that for the former is on the left side. On the other hand, the former distribution looks like a bimodal one and appears to be noticeably flatter than the latter distribution, which seems to be unimodal. This means that the longer carbon fibre is more advantageous in competitiveness than the shorter carbon fibre. It is concluded that, compared to the latter, the former may tolerate the greater change in the fracture stresses near the inflection point of the sigmoid distribution curve by keeping a higher load carrying capacity in a plastic range.

Key words: self-healing systems, failure-prone states, defect decay, single carbon fibre, strength, competitiveness

https://doi.org/10.15407/nnn.20.01.045

References
1. C. Perrow, Normal Accidents: Living with High-Risk Technologies (Princeton: Princeton University Press: 1999).
2. B. Rinner, Telematik, 2: 6 (2002); ftp://www.iti.tu-graz.ac.at/pub/publications/rinner02b.pdf
3. M. Ferney, Production Planning & Control, 1: 7 (2000); https://doi.org/10.1080/095372800232441
4. S. Y. Nof, G. Morel, L. Monostory, A. Molina, and F. Filip, Annu. Rev. Control, 30: 55 (2006); https://doi.org/10.1016/j.arcontrol.2006.01.005
5. B. Jiang, L. Sun, D. R. Figueiredo, B. Ribeiro, and D. Towsley, J. Stat. Phys. Theor. Exp., 2015: 1 (2015); http://dx.doi.org/10.1088/1742-5468/2015/11/P11022
6. C. Mutua, Int. J. Adv. Res. Manag. Soc. Sci., 8: 23 (2019); http://garph.co.uk/IJARMSS/May2019/G-2538.pdf
7. A. L. Kuzemsky, Statistical Mechanics and the Physics of Many-Particle Model Systems (Singapore: World Scientific: 2017).
8. A. N. Gorban, Entropy, 16: 2408 (2014); https://doi.org/10.3390/e16052408
9. V. I. Teslenko and O. L. Kapitanchuk, Mod. Phys. Lett. B, 32: 1850022 (2018); https://doi.org/10.1142/S0217984918500227
10. O. L. Kapitanchuk and V. I. Teslenko, Mol. Cryst. Liqu. Cryst., 670: 119 (2018); https://doi.org/10.1080/15421406.2018.1542072
11. O. L. Kapitanchuk, O. M. Marchenko, and V. I. Teslenko, Chem. Phys., 472: 249 (2016); https://doi.org/10.1016/j.chemphys.2016.03.007
12. P. W. Anderson, Phys. Rev., 109: 1492 (1958); https://doi.org/10.1103/PhysRev.109.1492
13. V. Lubchenko and P. G. Wolynes, Adv. Chem. Phys., 136: 95 (2007); https://doi.org/10.1002/9780470175422
14. K. Kassner and R. Silbey, J. Phys. Condens. Matter, 1: 4599 (1989); https://doi.org/10.1088/0953-8984/1/28/009
15. D. E. Bray, Nondestructive Testing Techniques (New York: John Wiley & Sons: 1992).
16. L. Cartz, Nondestructive Testing (Materials Park: ASM Interna-tional: 1995).
17. R. C. Hibbeler, Mechanics of Materials (Upper Saddle River: Pear-son Prentice Hall: 2014).
18. G. Vertesy, A. Gasparics, I. Szenthe, F. Gillemot, and I. Uytden-houwen, Materials, 12: 963 (2019); https://doi.org/10.3390/ma12060963
19. T. L. Anderson, Fracture Mechanics—Fundamentals and Application (Boca Raton: CRC Taylor & Francis: 2005).
20. Polymer Testing (Eds. W. Grellmann and S. Seidler) (Munich: Carl Hanser Verlag: 2013).
21. J. B. Watchman, W. R. Cannon, and M. J. Matthewson, Mechanical Properties of Ceramics (Hoboken: John Wiley & Sons: 2009).
22. R. Morrell, Fractography of Brittle Materials (Teddington: Na-tional Physical Laboratory: 1999).
23. S. van der Zwaag, Self-Healing Materials: An Alternative Approach to 20 Centuries of Material Science (Ed. S. van der Zwaag) (Dor-drecht: Springer: 2007), p. 1.
24. R. Mikkilineni, Designing a New Class of Distributed Systems (Dordrecht: Springer: 2011).
25. A. L. Yarin, M. W. Lee, S. An, and S. S. Yoon, Self-Healing Nano-textured Vascular Engineering Materials (Cham: Springer Nature Switzerland AG: 2019).
26. Progress in System Engineering. Advances in Intelligent Systems and Computing (Eds. H. Selvaraj, D. Zydek, and G. Chmaj) (Cham: Springer International Publishing Switzerland: 2015).
27. S. G. Russell and P. Norvig, Artificial Intelligence: A Modern Approach (Edinburg: Pearson Education Limited: 2016).
28. K. S. Cheong, E. P. Busso, and A. Arsenlis, Int. J. Plasticity, 21: 1797 (2005); https://doi.org/10.1016/j.ijplas.2004.11.001
29. F. Yang, Mater. Sci. Eng. A, 409: 153 (2005); https://doi.org/10.1016/j.msea.2005.05.117
30. G. S. S. Gomes, N. B. Ludermir, and L. M. M. R. Lima, Neural Comp. Appl., 20: 417 (2011); https://doi.org/10.1007/s00521-010-0407-3
31. P. Peczak and M. J. Luton, Phil. Mag. B, 68: 115 (1993); https://doi.org/10.1080/13642819308215285
32. H. Chang, J. Luo, P. V. Gulgunje, and S. Kumar, Annu. Rev. Mater. Res., 47: 331 (2017); https://doi.org/10.1146/annurev-matsci-120116-114326
33. M. Zou, W. Zhao et al., Adv. Mater., 2018: 1704419 (2018); https://doi.org/10.1002/adma.201704419
34. J. G. Lavin, High-Performance Fibers (Ed. J. W. S. Hearle) (Cam-bridge: Woodhead Publishing Ltd.: 2001), p. 156.
35. I. L. Kalnin, Fracture of Composite Materials (Eds. G. S. Sih and V. P. Tamuzs) (The Hague: Martinus Nijhoff Publishers: 1982), p. 465.
36. D. M. Bennett, Characterizing The Fiber-Matrix Interphase Via Single Fiber Composite Tests (Thesis of Disser. for Ph. D.) (Gainesville: University of Florida Press: 2007); http://etd.fcla.edu/UF/UFE0010097/bennett_d.pdf
37. Y.-T. Cho, T. Tohgo, and H. Ishii, JSME Int. J. A, 40: 234 (1997); https://doi.org/10.1299/jsmea.40.234
38. C. A. Klein, Opt. Eng., 37: 2826 (1998); https://doi.org/10.1117/1.601820
39. P. Politzer, J. S. Murray, J. M. Seminario, P. Lane, M. E. Grice, and M. C. Concha, J. Mol. Struct. (Theochem), 273: 1 (2001); https://doi.org/10.1016/S0166-1280(01)00533-4
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement