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Based on a three-stage kinetic model for description of deformation of a 
one-dimensional chain under tension in a plastic range, being applied to 
the decay of defects in a single carbon fibre within the one-defect approx-
imation, the dependence of failure probability on tensile stress is ob-
tained. A comparison of strength and competitiveness for the two differ-
ent-length carbon fibres equipped with self-healing mechanism is carried 
out. Concerning with a numerical simulation of the theoretical failure dis-
tributions by the use of the accessible experimental data, it is shown that, 
in comparison with the longer carbon fibre, the shorter carbon fibre is 
advantageous in strength since the stress-distribution curve for the latter 
is on the right side, and that for the former is on the left side. On the 
other hand, the former distribution looks like a bimodal one and appears 
to be noticeably flatter than the latter distribution, which seems to be 
unimodal. This means that the longer carbon fibre is more advantageous 
in competitiveness than the shorter carbon fibre. It is concluded that, 
compared to the latter, the former may tolerate the greater change in the 
fracture stresses near the inflection point of the sigmoid distribution 
curve by keeping a higher load carrying capacity in a plastic range. 

Ґрунтуючись на тристадійному кінетичному моделю для опису дефор-
мації одновимірного ланцюга під напруженням у пластичній області, 
застосованому до загасання дефектів у поодинокому вуглецевому воло-
кні в однодефектному наближенні, одержано залежність ймовірности 
руйнувань від розтягувального напруження. Проведено порівняння мі-
цности та конкурентоспроможности для двох різної довжини вуглеце-
вих волокон, устаткованих механізмом самозагоювання. Піклуючись 
про використання експериментальних даних для проведення чисельної 
симуляції теоретичних розподілів руйнувань, показано, що довше вуг-
лецеве волокно переважає у міцності коротше волокно, бо крива розпо-
ділу напруження для останнього знаходиться праворуч від першого. З 
іншого боку, перший розподіл виглядає бімодальним і виявляється 
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значно пологішим за останній, який виявляється унімодальним. Це 
означає, що довше вуглецеве волокно переважає коротше за конкурен-
тоспроможністю. Зроблено висновок, що порівняно з останнім перше 
волокно у змозі витерплювати більшу зміну руйнувальних напружень, 
близьких до точки перегину кривої сигмоїдального розподілу, утриму-
ючи вищу передану місткість навантаження в пластичній області. 

Key words: self-healing systems, failure-prone states, defect decay, single 
carbon fibre, strength, competitiveness. 
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1. INTRODUCTION 

Many material systems from designed glass–ceramic composites to 
advanced semiconductors are not perfect in structure but filled with 
defects of various types. These constantly occur within the systems 
in different numbers, which, when becoming too large, can be low-
ered below failure thresholds by using self-repairing and self-
healing mechanisms. Preventing the onset of defects in flawless 
systems does not make sense for comparison of their competitive 
advantage over one another. Instead, defect-containing fallible sys-
tems do compete in strength and competitiveness and, therefore, 
are in need in comparison with each other [1, 2]. 
 In competing systems, the source of their competitive advantage 
in achieving maximum quality performance is of basic interest. If 
system quality is associated with performance measured by produc-
tivity, the main source of competitive advantage is controllability 
of the rate ordered to populating a safe functioning state of the 
product manufacturing system [3]. In this case, the less the share 
of source resource providing a change in population is, the more 
controllable and hence performable system is. But, if the system 
quality is associated with tolerability of the failure-prone functional 
states with respect to defects, reliability and maintainability attrib-
utes typical of dependable manufacturing systems come into play [4]. 
 In this case, instead, the more the share of source resource 
providing a change in population is, the more tolerable and hence 
competitive system is. There are also other sources of system com-
petitive advantage such as relative size of shared state space, pref-
erential attachment, quality durability, etc. [5, 6]. However, cardi-
nality of the state space of the system depends exponentially on the 
number of its states. In the first case, these states are the right (or 
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safe functioning) states, while in the second case, they are the de-
fect (or failed) states. However, quantifying competitiveness of sys-
tems requires consideration of their one-particle states in the mean-
field approximation, with making the number of states as small as 
possible in both cases [7]. This allows quantifying a quality perfor-
mance of the system in comparison with other systems of the same 
cardinality, based on the information only about their interstate 
transition probabilities [8, 9]. 
 As the competitive advantage of the system treated in its defect 
state space is associated with the share of resource to provide a tol-
erable change in population of defect state appeared as weakest in 
respect to failure, the system competitiveness can similarly be as-
signed to a slope of response curve of the maximum of population 
of weakest defect state to a change in log failure rate. Thus, the 
system with lower sensitivity of that maximum will be superior in 
competitiveness compared to the system with higher sensitivity 
[10]. To describe transition probabilities between the states and de-
rive the master equation for evolution of populations in a defect-
state framework, we may use a perturbative treatment for the dis-
ordered solid as a nonequilibrium system weakly coupled to an equi-
librium environment [11]. 
 In this framework, the defect states are associated with the atom-
ic configurations of a disordered phase of a solid, between which 
some atoms or groups of atoms move by random jumps from site to 
site through the solid [12, 13]. The interaction needed for the de-
fect movement is treated microscopically as an effective coupling 
induced by phonon exchange between a disordered solid and its en-
vironment in the second order of perturbation theory and with us-
ing the polaron transformation [14]. This allows us to describe the 
temporal behaviour of a disordered solid, if the probabilities of 
transitions between its defect states are properly defined, and a 
comparison of theoretical predictions on fallible behaviour with ex-
perimental data on destructive testing is made. 
 There are a number of testing methodologies dependent on the 
type of the test method and a kind of detected defect [15–17]. For 
example, most detecting and correcting tests are non-destructive, 
whereas all mechanical tests are destructive [18]. Especially, the 
latter are ordered to obtain the cumulative distribution of probabil-
ity of failure of the tested material by associating its different 
samples with some ad hoc systems and then counting a number of 
their failures at the different stresses. Examples of ad hoc systems 
running without interruption during a single testing event are nu-
merous, from industrial and engineering systems [19] to polymers 
[20] and ceramics [21], and other brittle materials [22]. Further-
more, in order to be ready for the test, these systems must be 
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equipped with self-healing ability applied in many areas such as civ-
il engineering, aerospace, common computer networks and intelli-
gent systems of systems [23–27]. However, despite ubiquity in ap-
plications, there is a lack of theoretical models providing a unified 
description of strength and competitiveness of those systems based 
on the particular-use cases. 
 In the present paper, we address the above challenge by using the 
three-stage kinetic framework for evolution of decaying defects in a 
single carbon fibre within the one-defect approximation. That 
framework is regarded as a mesoscopic model for an ad hoc self-
healing system having a single failure-prone state such that, when 
affected by the defect, is failed with non-zero probability, thus, 
leading to irreversible damage of the system [10]. We describe this 
model in detail in Sec. 2. Further, in Sec. 3, a probability distribu-
tion of a system failure in the dependence on tensile stress is found. 
Then, in Sec. 4, experimental data accessible for the different-
length carbon fibres are compared with obtained theoretical results, 
which, finally, are discussed and concluded. 

2. MESOSCOPIC MODEL OF DEFECT EVOLUTION IN A SINGLE 
CARBON FIBRE 

There exist three characteristic scales for description of evolution 
of defects in different systems. These are microscale, mesoscale and 
macroscale. At the microscale, the defects are related to the excited 
states of a nonequilibrium quantum system weakly coupled to an 
environment [14]. It is assumed, despite different types of defects 
may occur in a system in all possible occupation numbers, there is 
the mean-field approximation that replaces an actual surrounding 
of the defect by a locally averaged number of neighbouring defects 
such that a single defect of most significant type will influence only 
one set of measurements [10]. Consequently, the many-defect state 
is specified in terms of occupation numbers (defect state popula-
tions) associated with the small elementary cells in the system in 
the single-defect state space. Remarkably, the kinetic equation for 
the state populations, being the result of averaging of the Liou-
ville–von Neumann evolution equation for the density matrix of the 
whole system ‘a systeman environmenttheir weak interaction’ 
over fast fluctuations in the energy levels of defect states, is re-
duced to a population balance equation. An example of derivation of 
this equation with its application to a three-stage absorbing Markov 
chain within the one-defect approximation has been given in [10]. 
 At the macroscale, the defects are related to macroscopic parti-
cles such as atomic or molecular species, whose concentrations vary 
with time and behaviour obeys the generalized continuity equation. 
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However, in the low-concentration limit and in the activated-state 
representation for single-defect structures, the equation of diffu-
sion of defects can be reduced to the master equation for their 
thermally activated Arrhenius-type transitions between the failure-
tolerant and the failure-prone defect states of the system [9, 11]. 
 While microscale and macroscale defect descriptions are rather 
general, the mesoscale defect model presented in this section is 
more specific and gives a pictured description of the temporal be-
haviour of the material system in terms of its plastic-like distor-
tions. Of course, that description is simplistic, but provides a sim-
ple dependence of the defect concentration on applied stress in the 
low-concentration limit. 
 Let us restrict ourselves to the mesoscale modelling of distortions in 

a single carbon fibre due to vacancy defects of plastic deformation ap-
peared under tensile stress load. Consider a linear one-dimensional 
chain consisted of M identical units interacting through plastic-
deformation fields characterized by the occurrence of extremely weak 

bonds between the nearest neighbours. At the thermodynamic equilib-
rium of chain loading, the change in the energy G  of the tensile 

stress  is compensated by the entropy lnBm k T C   of 

1,2,..., 1m M    noninteracting defects randomly distributed 

among chain units with concentration 
1 1

( 1) ( 1)C m M M 

      , 

where 
1

[ ( 1) 1]M M C M 

     is the reduced number of units per 
one defect, with kB and T being the Boltzmann constant and abso-
lute temperature, respectively. However, at clamping of the tensile 
stress, that equilibrium does not hold and should be changed for 
transformation to take place, as additional stages would be emerged 
in the chain temporal behaviour. 
 This is illustrated in Figs. 1, a–c (on the left side of Fig. 1) by 
relating the defects to: the sector-like cavities randomly formed un-
der applied tensile stress  between some chain units in starting 
state | 3   (Fig. 1, a); the rectangular cavity signifying a single in-
termediate failure-prone state | 2   (Fig. 1, b); and the inverted sec-
tor-like cavity designating a final irreversibly decaying self-healing 
state | 1   (Fig. 1, c). Therefore, to describe the chain nonequilibri-
um dynamics in terms of kinetic equations for reversible and irre-
versible transitions between three nonstationary occupancy configu-
rations, we must first define the defect state space {| 3 ,| 2 ,| 1 }    
for these configurations, then determine the stress-independent in-
trinsic energy levels (or enthalpies) 3,2,1

E  characteristic of them, 
with accounting for self-healing ad hoc properties of one-dimensional 
chain under modelling, and finally specify the rate constants 

,  ,  ,  ,  u v a b k  for transitions between the defect states in a one-defect 

approximation for a chain with a single failure-prone state. 
 Note, in such a mesoscopic setting, the only parameter, which bears 
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the dependence on the applied macroscopic stress , is the defect con-
centration C in state | 3   directly related to the rate constant for 

transition of that state to state | 2   as u u C   , with u  being a mi-
croscopic rate constant in the high-stress limit     where the defect 

concentration in state | 3   reaches unity: 1C  . On the other hand, 

the defect concentration is exponentially dependent on tensile stress, 
corresponding to the reduced failure function as  

 
0 0 9

1 exp[ ( ) / ]C C         , (1) 

where C0 and 0 are the shift and scale parameters chosen as some ref-
erences. For instance, under plastic deformation, 0 is of the order of a 

few tens of MPa to be smaller than a representative yield strength, at 

which plastic deformation begins, and 0
0C   is the defect concentra-

tion at the stress 0
    that, in fact, does not start from the zero line 

but from a value of 0. Therefore, low stresses 0
    give a linear rela-

tion between stress and concentration, 0 0 0
( ) / C C      , analo-

gous to the Hook’s law, while high stresses 0
   lead to the damage 

of the system [28]. Hence, to characterize tensile stress experiments, 
we can use an approximate logarithmic relation model 

0 0
[1 ln( / )]C C     as a compromise between the two stress models, 

that is: a linear model 0
C    for relation of hydrostatic stress to 

concentration of atoms in a plate [29] with 0
0C   at low stresses, and a 

log–log model 
1

0
lnln( )C 

    for relation of tensile stress to defect 

concentration derived from (1) in the large-concentration limit 

0
1 0C C   at high stresses 0

  . The latter model associated 

 

Fig. 1. Schematic for different configurations of one-dimensional chain with 

defects (sector-like or rectangular vacancies) under tensile stress  in plastic 

range. Left: (a), (b) and (c) are initial failure-tolerant, transient failure-prone 

and pre-ultimate self-healing configurations, respectively. Right: kinetic 

scheme of states | 3 ,| 2 ,| 1    corresponding to configurations (a), (b), (c) 

with transition rate constants ,  ,  ,  ,  u v a b k
  (shown by arrows). 
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with the link activation function [30] is widely used in various applica-
tions. For example, in neural networks and Markov chains, it indicates 

changes in the probabilities of states and the rates of transitions be-
tween states, which lead to the flattening of stress–strain plastic-
deformation curves during strain hardening [31]. 

2. MASTER EQUATION AND CUMULATIVE DISTRIBUTION 
FUNCTION 

The master equation for evolution of the nonnormalized state popu-
lations 3,2,1

( )P t  is represented by the set of three kinetic equations 
as follows: 

 

3 2 3

2 1 2 3

1 1 2

( ) ( ) ( );

( ) ( ) ( ) ( ) ( );

( ) ( ) ( ) ( ).

P t vP t u P t

P t bP t v a P t u P t

P t b k P t aP t





  


   


   

 (2) 

 For the initial conditions, 

 3 2 1
(0) 1,  (0) (0) 0,P P P    (3) 

typical for tensile testing materials [17, 32], solution of (2) for the 
population 

2
( )P t  of a failure-prone state | 2   in Fig. 1, b reads 

 
2
( ) exp( )

( )

l
l

l l l

l l

b k
P t u t





  
 

  



. (4) 

Here, the exponents 
, 1,2,3l l  are system eigenvalues, which corre-

spond to the nonnegative Debye relaxation rates obeying the charac-
teristic equation [10]: 

3 2
( ) [( )( ) ( )] 0u v a b k u v b k a u k u ak                  . (5) 

 Thus, the temporal behaviour of 
2
( )P t  (4) represents an exponen-

tial rise and decay composed of three relaxation modes. Every mode 
adds the particular contribution differing in its eigenvalue, ampli-
tude and sign. In general, the time dependence of (4) shows an in-
crease, peak and decline without oscillations. So, we can determine 
for 

2
( )P t  the maximum 

 
2 2 2

( )
peakP P t  (6) 

found at the peak time 
2

peakt t  as a nontrivial solution of the 
transcendent equation 
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2
( ) 0P t  , (7) 

and, then, associate such a maximum with the failure distribution 
of one-dimensional self-healing chain in the worst case. 
 Consequently, given the proportionality of the failure rate con-
stant to the defect concentration, u u C   , and a simplified rela-
tion between log of the latter and the reduced applied stress in the 
form 

0 0
/ 1 ln( / )C C     obtained in the previous section, we can 

calculate from (4)–(7) the stress-dependence of cumulative distribu-
tion function 

 
[ ]

2 2 0
[ln( / )]P P u u

  (8) 

in its functional dependence on the reduced logarithmic failure-rate 
constant, which depends on the stress as 

 

0

0 0.5 0 0.5 0 0

0 0

ln( / ) ln( / ) ln( / ) ( ) / ;

;  .

u u u u u u

u u u u

 

  

       

    
 (9) 

So, we can compare either the cumulative distribution function (8) or 

the correspondingly scaled and shifted failure-distribution function, 

 
[ ]

2 2 0.5
[log( / )]P P u u

 , (10) 

with the experimental data on tensile-stress testing of a single car-
bon material, where u0.5 is an auxiliary rate constant, which de-
pends on the material (for instance, its length) meaning a half point 
of failure-rate constant on sigmoid distribution curve (10). Fortu-
nately, the quantity 

0 0.5
ln( / )u u  in (9) does not depend on the sort 

of the material and may be accounted as the shift along the abscissa 
axis with a constant parameter 2.3030, where 2.303 is the loga-
rithmic conversion factor from log to ln. On the contrary, the value 
of u0.5 depends on the material and must be taken into account as an 
adjusted parameter for purposes of comparison with experiment 
from the very beginning. 

3. COMPARISON OF EXPERIMENTAL DATA TO OBTAINED 
THEORETICAL RESULTS WITH DISCUSSION AND 
CONCLUSIONS 

In the previous sections, we propose a three-stage kinetic model for 
defect dynamics under the tensile stress in plastic range of one-
dimensional self-healing chain (see Fig. 1). To compare the obtained 
theoretical cumulative distribution (8) with the existing experi-
mental data on the failure probability, we let the chain to be al-
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lowed to adopt only a single stress test by presenting itself as a 
brittle material with no significant plastic deformation before dam-
age. At the same time, the chain is regarded as self-healing. There-
fore, it is not necessarily failed even when applied stress achieves a 
particular threshold, but, according to self-healing ability, can tol-
erate any finite stress without failure with nonzero probability. 
Just such behaviour is seen in the composite material case, for ex-
ample, a ductile matrix reinforced by a brittle carbon fibre. Re-
markably, the latter is fabricated in various length scales and diam-
eters, ranging from macroscale (as-received woven fabrics) to 
mesoscale (fibre tow diameter) to microscale (a single fibre diame-
ter) and nanoscale (nanofibre diameter) [32, 33]. Moreover, the car-
bon fibre is generally characterized by the self-organizing capability 
of the aromatic carbon to orient graphite crystallites, either spon-
taneously or by heat treatment, along the fibre axis in the relaxed 
state [34]. Such a fibre is subjected to the number of intrinsic de-
fects associated, for example, with dislocations, disordered interfi-
brillar carbon, misoriented crystallites and other fracture-initiating 
flaws of unknown kind [35]. Hence, it is natural to regard that to 
be the strong, perfectly elastic material at the low stress in elastic 
range, but only an occasionally (with a nonzero probability) brittle 
material at the higher stress in plastic range, a single carbon fibre 
must be equipped with its own self-healing mechanism manifested 
itself as, for instance, an irreversible decay stage in the multistage 
defect dynamics model (cf. Fig. 1). 
 Thus, leaving aside the problem on how defect can emerge in a single 

carbon fibre within the one-defect approximation and using a formal 
three-stage kinetic model for defect decay given in Fig. 1, we conclude 

this paper with results of comparing cumulative failure distribution 

(8) of that model with experimental data obtained in [36] from load-
deflection curves for the two different-length carbon fibres. As seen in 

Fig. 2 displayed for long and short carbon fibres, respectively, the as-
sociated distribution plots appear to be essentially bimodal. Inspection 

of a sigmoid distribution fit to the corresponding data points in Fig. 2 

and Table 1 is summarized in the following conclusions. 
 First, the use of ad hoc adjustable parameters for the rate constants 

0.5
,  ,  ,  ,  u v a b k  provides a good agreement between the theory and the 

experiment with a concern on revealing bimodal character of sigmoid 

cumulative distributions not falling into a family of the Weibull dis-
tributions [10]. This indicates the utility of a three-stage model in Fig. 
1 to explain bimodality of failure distributions of carbon fibres by vir-
tue of self-healing mechanism favouring the defect decay in plastic 

range. 
 Second, for longer and shorter carbon fibres, the corresponding pa-
rameters ,  ,  ,  v a b k  are more close to each other than a parameter 0.5

u , 
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which is, accordingly, very distinct (see Table). This can be well under-
standable by revealing the fact that shorter carbon chain is generally 

stronger with higher strength than longer chain lower in strength. 
 Third, the sigmoid failure distribution for longer carbon fibre (left 

curve in Fig. 2) is flatter than that of shorter fibre (right curve in Fig. 
2). This means that, for the longer (L) and the shorter (S) carbon fi-
bres, the former tolerates greater change ratios of corresponding fail-
ure rate constants 

( , )

0.9

L Su  and 
( , )

0.1

L Su  at, say, 0.9 and 0.1 of sigmoid 

curve, respectively, by keeping the higher load carrying capacity given 

by the change in log failure rates as 
( , ) ( , ) ( , )

0.9 0.1 0.9 0.1
log[ / ]

L S L S L Su u   than the 

latter. From Table, we see that 
( )

0.9 0.1
3.32

L

   and 
( )

0.9 0.1
2.85

S

  . In an-
other words, the load carrying capacity for a longer fibre is indeed 

greater than that for a shorter one (cf. [37]). 
 Finally, in summary, we show that, in comparison to shorter carbon 

fibres at dynamically varying stress loadings, longer ones are more ad-
vantageous in competitiveness, though, during static stress loading, 

are less advantageous in strength. Interestingly, the analogous ‘max-
imizing-competitive-advantage-while-minimizing-strength-to-failure’ 
framework is characteristic of the high-energy systems such as mis-
sile windows [38] and explosives [39]. The final choice to select a 

TABLE. 

 u0.1 u0.5 u0.9 0.9–0.1 

Longer fibre 0.0585 6.764 123.17 3.323 

Shorter fibre 0.0432 0.513 30.74 2.852 

 

Fig. 2. Theoretical cumulative probability distributions of failures (curves (8) 
with parameters shown in insets) in comparison with experimental data 

(adapted from [37]) for longer (right) and shorter (left) single carbon fibres. 
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measure for the competitive advantage of carbon fibres can be made 
based on also the other requirements such as manufacturing cost 
and dynamic environment behaviour. 
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