Issues

 / 

2022

 / 

vol. 20 / 

Issue 1

 



Download the full version of the article (in PDF format)

V. I. Kanevskii, S. O. Kolienov, V. I. Grygoruk, and Yu. V. Prokopenko
Optimization of the Task of Determining the Conditions for Effective Photochemical Subnanopolishing of the Rough Surface of the Quartz for Lighting from the Side of the Quartz
0025–0044 (2022)

PACS numbers: 68.35.Ct, 78.20.Ci, 81.16.Rf, 81.65.Cf, 81.65.Ps, 81.70.Fy

The solution of the electrodynamic task for defining the optimal configuration of the evanescent field formed near the rough quartz surface, when lighting from the quartz side that provides effective photochemical polishing of this surface up to a subnanometer level of roughness, is considered. It is found that, for a quartz surface profile in the form of triangular protrusions and troughs, which are periodically repeated, optimal conditions for photochemical polishing are achieved when the angle of light incidence is critical and the height of the surface protrusions is small (up to 20 nm). It is also shown what the criteria are, at which a regular profile in the form of triangular protrusions and troughs can be used as equivalent in defining the optimal field parameters for a random surface profile characterized by the Gaussian correlation function.

Key words: surface plasmon resonance, scattering of plane electromagnetic waves, vector Helmholtz equation, photochemical polishing, evanescent field, total internal reflection

https://doi.org/10.15407/nnn.20.01.025

References
1. I. Ali, S. R. Roy, and G. Shinn, Solid State Technology, 37, No. 10: 63 (1994).
2. L. F. Johnson and K. A. Ingersoll, Appl. Opt., 22: 1165 (1983); https://doi.org/10.1364/AO.22.001165
3. W. Nomura, T. Yatsui, and M. Ohtsu, Progress in Nano-Electro-Optics VII. Springer Series in Optical Sciences, 155: 113 (2010); https://doi.org/10.1007/978-3-642-03951-5_4
4. T. Yatsui et al., phys. status solidi (a), 211, No. 10: 2339 (2014); https://doi.org/10.1002/pssa.201431161
5. W. C. Chew and W. C. Weedon, Microwave Opt. Tech. Lett., 7: 599 (1994); https://doi.org/10.1002/mop.4650071304
6. Z. S. Sacks et al., IEEE Transactions on Antennas and Propaga-tion, 12, No. 43: 1460 (1995); https://doi.org/10.1109/8.477075
7. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer: 1988); https://doi.org/10.1007/BFb0048317
8. M. Born and E. Wolf, Principles of Optics (New York: Pergamon: 1999).
9. J. Jin, The Finite Element Method in Electromagnetics (New York: Wiley: 2002).
10. J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics (New York: Wiley-IEEE Press: 1998); https://doi.org/10.1109/9780470544655
11. P. W. Johnson and R. W. Christy, Phys. Rev. B, 6, No. 12: 4370 (1972); https://doi.org/10.1103/PhysRevB.6.4370
12. L. Novotny and B. Hecht, Osnovy Nanooptiki [Principles of Nano-Optics] (Moscow: Fizmatlit: 2011) (Russian translation).
13. M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond (Weinheim: Willey–VCH Verlag&Co. KGaA: 2011).
14. V. I. Grygoruk, V. I. Kanevskii, and S. O. Kolienov, Metallofiz. Noveishie Tekhnol., 42, No. 1: 105 (2020) (in Ukrainian); doi:10.15407/mfint.42.01.0105.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement