Issues

 / 

2022

 / 

vol. 20 / 

Issue 1

 



Download the full version of the article (in PDF format)

Hassan T. B. ALHammade
Theoretical Study of the Conduction Band and Energy Gap of GaInNAs/InP Quantum Well Structure
0015–0023 (2022)

PACS numbers: 73.21.Fg, 73.40.Lq, 73.63.Hs, 81.07.St, 85.35.Be

Changes of temperature and composition play a major role in enhancement of the electronic properties of low-dimensional semiconductor devices. Therefore, the interest of researchers in this field is increased. In this article, we study the effect of both the temperature and the nitrogen ratio on the electronic structure of GaxIn1-xNyAs1-y/InP quantum well. The band anticrossing model, Varshni model, and Bose–Einstein model are adopted to determine the nitrogen effect on conduction band (E- and E+). The band gap of GaxIn1-xAs as ternary alloy, and band offsets (ΔEc, ΔEv) for the GaxIn1-xNyAs1-y/InP quantum wells are estimated as functions of nitrogen content and temperature. The splitting of conduction band into two nonparabolic subbands due to adding the nitrogen to GaInAs alloy contributes into increase of the band offset of GaxIn1-xNyAs1-y/InP quantum well, and thus, into increase of the number of energy states inside the quantum well. The results may be useful for applications in electronic and optical devices.

Key words: GaxIn1-xNyAs1-y/InP quantum well, conduction band, band an-ticrossing, band offset

https://doi.org/10.15407/nnn.20.01.015

References
1. E. Herbert Li, IEEE Journal of Quantum Electronics, 34, No. 6: 982 (1998); doi:10.1109/3.678594
2. H. Burkhard, H. W. Dinges, and E. Kuphal, Journal of Applied Physics, 53, No. 1: 655 (1982); https://doi.org/10.1063/1.329973
3. R. Ahuja et al., Solid State Communications, 104, No. 5: 249 (1997); https://doi.org/10.1016/S0038-1098(97)00287-1
4. J. Mudron et al., ASDAM’98. Conference Proceedings. Second In-ternational Conference on Advanced Semiconductor Devices and Microsystems (Cat. No. 98EX172) (IEEE: 1998); doi:10.1109/ASDAM.1998.730207
5. N. P. Siwak, X. Z. Fan, and R. Ghodssi, Journal of Micromechan-ics and Microengineering, 25, No. 4: 043001 (2015); https://doi.org/10.1088/0960-1317/25/4/043001
6 J. Wagner et al., 16th IPRM. 2004 International Conference on Indium Phosphide and Related Materials (IEEE: 2004); doi:10.1109/ICIPRM.2004.1442604
7. D. Serries et al., Conference Proceedings. 14th Indium Phos-phide and Related Materials Conference (Cat. No. 02CH37307) (IEEE: 2002); doi:10.1109/ICIPRM.2002.1014449
8. W. Shan et al., Journal of Applied Physics, 86, No. 4: 2349 (1999); https://doi.org/10.1063/1.371148
9. R. J. Potter et al., physica status solidi (a), 187, No. 2: 623 (2001); https://doi.org/10.1002/1521-396X(200110)187:2<623::AID-PSSA623>3.0.CO;2-Q
10. S. Procz et al., Journal of Applied Physics, 103, No. 7: 073103 (2008); https://doi.org/10.1063/1.2895002
11. Sajal Paul, J. B. Roy, and P. K. Basu, Journal of Applied Phys-ics, 69, No. 2: 827 (1991); https://doi.org/10.1063/1.348919
12. Czeslaw Skierbiszewski, Semiconductor Science and Technology, 17, No. 8: 803 (2002); https://doi.org/10.1088/0268-1242/17/8/309
13. S. A. Lourenco et al., Journal of Applied Physics, 89, No. 11: 6159 (2001); https://doi.org/10.1063/1.1367875
14. R. Kudrawiec et al., Acta Physica Polonica. Series A: General Physics, 106, No. 2: 249 (2004).
15. T. H. Chen, Y. S. Huang, D. Y. Lin, and K. K. Tiong, Journal of Applied Physics, 96, No. 11: 6298 (2004); https://doi.org/10.1063/1.1805724
16. Katsuhiro Uesugi, Ikuo Suemune, Tatsuo Hasegawa, Tomoyuki Aku-tagawa, and Takayoshi Nakamura, Applied Physics Letters, 76, No. 10: 1285 (2000); https://doi.org/10.1063/1.126010
17. Z. Pan, L. H. Li, Y. W. Lin, B. Q. Sun, D. S. Jiang, and W. K. Ge, Applied Physics Letters, 78, No. 15: 2217 (2001); https://doi.org/10.1063/1.1362335
18. Besire Gonul, Koray Koksal, and Ebru Bakir, Physica E: Low-Dimensional Systems and Nanostructures, 31, No. 2: 148 (2006); https://doi.org/10.1016/j.physe.2005.11.007
19. Marta Gladysiewicz, Robert Kudrawiec, and Marek S. Wartak, IEEE Journal of Quantum Electronics, 51, No. 5: 1 (2015); doi:10.1109/JQE.2015.2410340.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement