Issues

 / 

2021

 / 

vol. 19 / 

Issue 4

 



Download the whole Issue (in PDF format)

M. M. Solovan, H. M. Yamrozyk, A. I. Mostovyi, V. V. Brus, P. D. Maryanchuk
«Photosensitive Schottky Graphite/n-Si Diodes Fabricated by Electron Beam Evaporation »
0823–0830 (2021)

PACS numbers: 72.80.Ey, 73.20.Hb, 73.40.Kp, 73.40.Lq, 81.15.Jj, 85.60.Bt, 85.60.Dw

This paper presents the results of studies of the physical properties of photosensitive Schottky graphite/n-Si diodes fabricated by deposition of the thin graphite films by the electron beam evaporation in a universal vacuum system Leybold–Heraeus L560 from compressed pellets of graphite powder onto the substrates of n-type Si. The current–voltage characteristics (at different temperatures) are measured. The dominant mechanisms of the current transfer through the Schottky diodes in forward biases are determined. As revealed, the dominant current-transport mechanism is conditioned by the generation–recombination processes. The photosensitive Schottky graphite/n-Si diodes possess produce a maximum short-circuit current Isc = 0.38 mA, an open-circuit voltage Voc = 0.33 V, and a fill factor FF = 0.35 under standard illumination conditions (80 mW/cm2). The sensitivity (R) and detectivity (D*) are determined. As established, the studied Schottky graphite/n-Si diodes can be successfully used as ultraviolet-radiation detectors in the photodiode mode of operation.

Key words: graphite, Schottky diode, photodetector, thin films, current transfer mechanisms

https://doi.org/10.15407/nnn.19.04.823

References

1. Z. I. Alferov, Semiconductors, 32: 1 (1998); https://doi.org/10.1134/1.1187350
2. C. Xie, Y. Wang, Z. X. Zhang, D. Wang, and L. B. Luo, Nano Today, 19: 41 (2018); https://doi.org/10.1016/j.nantod.2018.02.009
3. R. K. Arun, V. Gupta, P. Singh, G. Biswas, and N. Chanda, Chemistry Select, 4: 152 (2019); https://doi.org/10.1002/slct.201802960
4. N. Kurra and G. U. Kularni, Lab on a Chip, 13: 2866 (2013); https://doi.org/10.1039/C3LC50406A
5. Y. Wang and H. Zhou, Energy Environ. Sci., 4: 1704 (2011); https://doi.org/10.1039/C0EE00759E
6. V. V. Brus and P. D. Maryanchuk, Carbon, 78: 613 (2014); https://doi.org/10.1016/j.carbon.2014.07.021
7. M. M. Solovan, H. M. Yamrozyk, V. V. Brus, and P. D. Maryanchuk, East Eur. J. Phys., 4: 154 (2020); https://doi.org/10.26565/10.26565/2312-4334-2020-4-19
8. V. V. Brus et al., Nanotechnology, 31: 505706 (2020); https://doi.org/10.1088/1361-6528/abce55
9. M. N. Solovan, G. O. Andrushchak, A. I. Mostovyi, T. T. Kovaliuk, V. V. Brus, and P. D. Maryanchuk, Semiconductors, 52: 236 (2018); https://doi.org/10.1134/S1063782618020185
10. M. M. Solovan, H. P. Parkhomenko, and P. D. Marianchuk, Journal of Physical Studies, 23: 4801 (2019); https://doi.org/10.30970/jps.23.4801
11. V. V. Brus, P. D. Maryanchuk, M. I. Ilashchuk, J. Rappich, I. S. Babiychuk, and Z. D. Kovalyuk, Solar Energy, 112: 78 (2015); https://doi.org/10.1016/j.solener.2014.11.023
12. V. V. Brus and P. D. Maryanchuk, Appl. Phys. Lett., 104: 173501 (2014); https://doi.org/10.1063/1.4872467
13. B. L. Sharma and R. K. Purohit, Semiconductor Heterojunctions (Oxford–New York: Pergamon Press: 1974).
14. X. Zhang, D. Hu, Z. Tang, and D. Ma, Applied Surface Science, 357: 1939 (2015); https://doi.org/10.1016/j.apsusc.2015.09.146
15. P. Long, S. Varadaraajan, J. Matthews, and J. F. Schetzina, Optoelectronics Review, 10: 251 (2002).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement